In [10]:
%run src/markov_switching.py
In [11]:
import matplotlib.pyplot as plt
In [12]:
jlm_compute_stat_discrete()
Out[12]:
In [13]:
jlm_compute_stat_discrete(ψ=1.97, β=0.999)
Out[13]:
In [14]:
G = 30
gamma_vals = np.linspace(5, 15, G)
sigma1_vals = np.linspace(0.001, 0.01, G)
In [15]:
R = np.empty((G, G))
for i, γ in enumerate(gamma_vals):
for j, σ_1 in enumerate(sigma1_vals):
MC, _ = jlm_compute_stat_discrete(γ=γ, σ_1=σ_1)
R[i, j] = MC
In [16]:
x, y = np.meshgrid(gamma_vals, sigma1_vals)
fig = plt.figure(figsize=(10, 6))
ax = fig.add_subplot(111)
cs1 = ax.contourf(x, y, R.T, alpha=0.5)
ctr1 = ax.contour(x, y, R.T, "k", levels=[1.0048, 1.005], colors=["black"])
plt.clabel(ctr1, inline=1, fontsize=13, fmt="%1.4f")
plt.colorbar(cs1, ax=ax)
ax.set_xlabel("$\gamma$", fontsize=16)
ax.set_ylabel("$\sigma(1)$", fontsize=16)
plt.savefig("temp.pdf")
plt.show()
In [ ]:
In [ ]: