In [1]:
%run src/stability_plots
import numpy as np

In [2]:
import numba
numba.__version__


Out[2]:
'0.42.0'

In [3]:
%run src/ssy_monte_carlo_test.py

In [4]:
G = 12  # Grid size

In [5]:
ssy = SSY()

A quick test of the functionality:


In [6]:
f = ssy_function_factory(ssy, parallelization_flag=False)

Let's check that the seed is working:


In [9]:
f(n=200, m=20)


Out[9]:
0.9996594133349251

In [10]:
f(n=200, m=20)


Out[10]:
0.9996594133349251

Remember original values


In [11]:
dot_loc = ssy.ψ, ssy.μ_c

In [12]:
psi_vec = np.linspace(1.1, 4.0, G)
mu_vec = np.linspace(0.0005, 0.003, G)

R = np.empty((G, G))

In [13]:
for i, ψ in enumerate(psi_vec):
    for j, μ_c in enumerate(mu_vec):
        ssy.ψ = ψ
        ssy.μ_c = μ_c
        test_function = ssy_function_factory(ssy, parallelization_flag=False)
        R[i, j] = test_function()

In [14]:
stability_plot(R, 
               psi_vec, mu_vec, 
                "$\psi$", "$\mu_c$", 
                txt_flag='ssy',
                dot_loc=dot_loc,
                coords=(25, 25))


Now let's look at a different set of parameters:


In [15]:
beta_vec = np.linspace(0.997, 0.9999, G)
psi_vec = np.linspace(1.25, 3.5, G)

In [16]:
ssy = SSY()
dot_loc = ssy.β, ssy.ψ

In [17]:
for i, β in enumerate(beta_vec):
    for j, ψ in enumerate(psi_vec):
        ssy.ψ = ψ
        ssy.β = β
        test_function = ssy_function_factory(ssy, parallelization_flag=False)
        R[i, j] = test_function()

In [18]:
stability_plot(R, 
               beta_vec, psi_vec, 
               "β", "ψ", 
               txt_flag='ssy',
               dot_loc=dot_loc)



In [ ]:


In [ ]: