(32, 32, 1) (50000, 32, 32, 1)
Train on 40000 samples, validate on 10000 samples
Epoch 1/10
40000/40000 [==============================] - 11s - loss: 0.0253 - val_loss: 0.0481
Epoch 2/10
40000/40000 [==============================] - 7s - loss: 0.0139 - val_loss: 0.0445
Epoch 3/10
40000/40000 [==============================] - 7s - loss: 0.0116 - val_loss: 0.0313
Epoch 4/10
40000/40000 [==============================] - 7s - loss: 0.0106 - val_loss: 0.0364
Epoch 5/10
40000/40000 [==============================] - 7s - loss: 0.0100 - val_loss: 0.0175
Epoch 6/10
40000/40000 [==============================] - 7s - loss: 0.0096 - val_loss: 0.0149
Epoch 7/10
40000/40000 [==============================] - 7s - loss: 0.0092 - val_loss: 0.0197
Epoch 8/10
40000/40000 [==============================] - 7s - loss: 0.0089 - val_loss: 0.0094
Epoch 9/10
40000/40000 [==============================] - 7s - loss: 0.0087 - val_loss: 0.0111
Epoch 10/10
40000/40000 [==============================] - 7s - loss: 0.0086 - val_loss: 0.0096