Train on 60000 samples, validate on 10000 samples
Epoch 1/10
60000/60000 [==============================] - 2s - loss: 0.3648 - acc: 0.7527 - val_loss: 0.2718 - val_acc: 0.7934
Epoch 2/10
60000/60000 [==============================] - 1s - loss: 0.2641 - acc: 0.7968 - val_loss: 0.2530 - val_acc: 0.7968
Epoch 3/10
60000/60000 [==============================] - 1s - loss: 0.2431 - acc: 0.7969 - val_loss: 0.2308 - val_acc: 0.7970
Epoch 4/10
60000/60000 [==============================] - 1s - loss: 0.2223 - acc: 0.7976 - val_loss: 0.2117 - val_acc: 0.7978
Epoch 5/10
60000/60000 [==============================] - 1s - loss: 0.2058 - acc: 0.7989 - val_loss: 0.1978 - val_acc: 0.7992
Epoch 6/10
60000/60000 [==============================] - 1s - loss: 0.1939 - acc: 0.8001 - val_loss: 0.1878 - val_acc: 0.8008
Epoch 7/10
60000/60000 [==============================] - 1s - loss: 0.1850 - acc: 0.8013 - val_loss: 0.1798 - val_acc: 0.8016
Epoch 8/10
60000/60000 [==============================] - 1s - loss: 0.1778 - acc: 0.8025 - val_loss: 0.1735 - val_acc: 0.8030
Epoch 9/10
60000/60000 [==============================] - 1s - loss: 0.1718 - acc: 0.8035 - val_loss: 0.1678 - val_acc: 0.8033
Epoch 10/10
60000/60000 [==============================] - 1s - loss: 0.1667 - acc: 0.8043 - val_loss: 0.1631 - val_acc: 0.8040