In [21]:
import numpy as np 
import pandas as pd

# plots
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline

trip= pd.read_csv('trip.csv')

In [16]:
# Duracion de viajes por bicicleta.
plt = trip.groupby('bike_id').sum()['duration'].plot(figsize=(14,4));
plt.set_xlabel('bike_id')
plt.set_ylabel('duration')
plt.set_title('Cantidad de viajes por bicicleta');



In [7]:
# Top five bikes durations 
trip.sort_values('duration',ascending=False).head(10)


Out[7]:
id duration start_date start_station_name start_station_id end_date end_station_name end_station_id bike_id subscription_type zip_code
573566 568474 17270400 12/6/2014 21:59 South Van Ness at Market 66 6/24/2015 20:18 2nd at Folsom 62 535 Customer 95531
382718 825850 2137000 6/28/2015 21:50 Market at Sansome 77 7/23/2015 15:27 Yerba Buena Center of the Arts (3rd @ Howard) 68 466 Customer 97213
440339 750192 1852590 5/2/2015 6:17 San Antonio Shopping Center 31 5/23/2015 16:53 Castro Street and El Camino Real 32 680 Subscriber 94024
371066 841176 1133540 7/10/2015 10:35 University and Emerson 35 7/23/2015 13:27 University and Emerson 35 262 Customer 94306
80510 111309 722236 11/30/2013 13:29 University and Emerson 35 12/8/2013 22:06 University and Emerson 35 247 Customer 94301
606063 522337 720454 10/30/2014 8:29 Redwood City Caltrain Station 22 11/7/2014 15:36 Stanford in Redwood City 25 692 Customer 94010
223016 323594 716480 6/13/2014 16:57 Harry Bridges Plaza (Ferry Building) 50 6/21/2014 23:59 Civic Center BART (7th at Market) 72 633 Subscriber 94131
195379 361321 715339 7/13/2014 5:50 Arena Green / SAP Center 14 7/21/2014 12:32 Adobe on Almaden 5 251 Customer nil
421839 774999 688899 5/20/2015 15:27 Palo Alto Caltrain Station 34 5/28/2015 14:49 California Ave Caltrain Station 36 230 Customer nil
524521 635260 655939 2/8/2015 3:05 San Jose Civic Center 3 2/15/2015 17:17 SJSU 4th at San Carlos 12 132 Customer 89451

In [17]:
#Las Mayores cantidad de duraciones por bike_id
plt = trip['duration'].value_counts()[:5].plot('bar');
plt.set_xlabel('bike_id')
plt.set_ylabel('duration')
plt.set_title('Bicicletas con Mayor viajes en Duracion');



In [18]:
duration_station = trip['duration'].value_counts()
%matplotlib notebook
# top 20
duration_station[:10].plot('bar');



In [23]:
#Que estacion de Origen tiene las mayor cantidad,las 10
plt = trip['start_station_name'].value_counts()[:10].plot('bar');
plt.set_xlabel('Estaciones')
plt.set_ylabel('Partidas')
plt.set_title('Las 10 estaciones con la mayor cantidad de salidas');



In [24]:
#Que estacion de Origen tiene las mayor cantidad,las 20
plt = trip['start_station_name'].value_counts()[:20].plot('bar');
plt.set_xlabel('Estaciones')
plt.set_ylabel('Partidas')
plt.set_title('Las 20 estaciones con la mayor cantidad de salidas');



In [25]:
#Que estacion de destino que tiene las mayor cantidad de llegadas,las 20
plt = trip['end_station_name'].value_counts()[:20].plot('bar');
plt.set_xlabel('Estaciones')
plt.set_ylabel('Llegadas')
plt.set_title('Las 20 estaciones con la mayor cantidad de llegadas');



In [9]:
status= pd.read_csv('stat80.csv')

In [10]:
status.sort_values('bikes_available',ascending=False).head(10)


Out[10]:
station_id bikes_available docks_available time
185339 2 24 3 2014/01/07 17:46:03
185338 2 24 3 2014/01/07 17:45:02
185337 2 24 3 2014/01/07 17:44:02
185336 2 24 3 2014/01/07 17:43:03
63706 2 23 4 2013/10/14 18:38:01
67035 2 23 4 2013/10/17 06:25:01
84226 2 23 4 2013/10/29 07:35:02
84225 2 23 4 2013/10/29 07:34:01
67027 2 23 4 2013/10/17 06:16:01
67028 2 23 4 2013/10/17 06:17:01

In [ ]:


In [ ]: