In [19]:
import numpy as np 
import pandas as pd

# plots
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline

stat= pd.read_csv('stat80.csv')
wed= pd.read_csv('weather.csv')

In [4]:
stat.sample(3)


Out[4]:
station_id bikes_available docks_available time
1950398 9 8 7 2013/11/28 01:39:02
2784362 12 10 9 2014/01/03 12:49:02
268817 3 10 5 2013/09/04 23:09:01

In [5]:
len(stat)


Out[5]:
2978660

In [6]:
stat.dtypes


Out[6]:
station_id          int64
bikes_available     int64
docks_available     int64
time               object
dtype: object

In [11]:
# Histogram of ratings*
stat[['bikes_available','station_id']].groupby('bikes_available').agg([np.size]).plot(kind='bar',figsize=(16,8));



In [13]:
stat[['station_id','bikes_available']].groupby('station_id').agg([np.size]).hist(bins=100,figsize=(16,8));



In [16]:
# Number of crashes per year
stat.groupby('time').count()['bikes_available'].plot(figsize=(14,4));



In [ ]:


In [ ]: