In [34]:
import numpy as np
from scipy.stats import t
np.random.seed(32)
x = np.random.normal(3.2,2.0,size=10)
print(x)
mean = np.sum(x)/len(x)
variance = np.sum(((x - mean)**2)/(len(x)-1))
print(mean,variance,np.sqrt(variance))
tval = (mean - 3.2)/(np.sqrt(variance)/np.sqrt(10))
print(tval)
#tdist = scipy.stats.t
#scipy.stats.t.pdf(3)
cdf = t.cdf(tval,df=9)
print( (1.-cdf)*2)
scipy.stats.ttest_1samp(x,popmean=3.2)
Out[34]: