In [1]:
import pandas as pd
import numpy as np
In [2]:
df = pd.read_hdf('foo.h5','df')
df
Out[2]:
In [21]:
x = df['A']-df['A'].shift(1)
x.iloc[1]
In [4]:
df.groupby('B')['D'].sum()
Out[4]:
In [6]:
pd.get_dummies(df['B'])
Out[6]:
In [7]:
df['A'].dt.tz_localize('EST')
Out[7]:
In [8]:
df['A'].dt.tz_localize('EST').dt.tz_convert('CET')
Out[8]:
In [14]:
s = df['B'].astype('object') + ' ' + 'foobar')
s
Out[14]:
In [17]:
pd.rolling_sum(df['D'],3)
Out[17]:
In [18]:
df['D'].sum()
Out[18]:
In [25]:
df.query('B==["bar"]')
Out[25]:
In [26]:
df.loc[df.B=='bar']
Out[26]:
In [ ]:
df[df['B']=='bar']
In [28]:
df = DataFrame(columns=list('ABC'))
df.loc[1] = 2
df.loc[2] = 5
df
Out[28]:
In [ ]:
for x in row:
df = df.append(....)
l = []
for x in row:
l.append(x)
pd.concat(l)
In [31]:
df.groupby(pd.cut(Series(np.random.randn(10)),bins=3)).sum()
Out[31]:
In [ ]: