In [1]:
%load_ext watermark
%watermark -u -d -v -p numpy,matplotlib,scipy,pandas,sklearn,mlxtend
In [2]:
%matplotlib inline
from __future__ import division, print_function
from collections import defaultdict
import itertools
import numpy as np
from scipy import interp
import pandas as pd
import matplotlib.pyplot as plt
from matplotlib.colors import ListedColormap
import seaborn.apionly as sns
from sklearn.metrics import accuracy_score, confusion_matrix, roc_curve, auc, classification_report
from sklearn.model_selection import cross_val_score, StratifiedShuffleSplit, KFold, StratifiedKFold
from mlxtend.feature_selection import SequentialFeatureSelector as SFS
import composition as comp
import composition.analysis.plotting as plotting
color_dict = {'light': 'C0', 'heavy': 'C1', 'total': 'C2',
'P': 'C0', 'He': 'C1', 'O': 'C3', 'Fe':'C4'}
In [ ]:
comp_class = True
comp_list = ['light', 'heavy'] if comp_class else ['P', 'He', 'O', 'Fe']