number training events = 36125
Fitting 5 folds for each of 19 candidates, totalling 95 fits
[Parallel(n_jobs=10)]: Done 30 tasks | elapsed: 8.4s
[Parallel(n_jobs=10)]: Done 95 out of 95 | elapsed: 44.8s finished
best GS CV score = 0.792055363322
best GS CV depths = {'classifier__max_depth': 15}
Grid scores on development set:
0.699 (+/-0.007) for {'classifier__max_depth': 1}
0.716 (+/-0.010) for {'classifier__max_depth': 2}
0.723 (+/-0.006) for {'classifier__max_depth': 3}
0.731 (+/-0.004) for {'classifier__max_depth': 4}
0.746 (+/-0.007) for {'classifier__max_depth': 5}
0.759 (+/-0.008) for {'classifier__max_depth': 6}
0.773 (+/-0.010) for {'classifier__max_depth': 7}
0.781 (+/-0.009) for {'classifier__max_depth': 8}
0.786 (+/-0.011) for {'classifier__max_depth': 9}
0.789 (+/-0.011) for {'classifier__max_depth': 10}
0.791 (+/-0.011) for {'classifier__max_depth': 11}
0.791 (+/-0.014) for {'classifier__max_depth': 12}
0.792 (+/-0.012) for {'classifier__max_depth': 13}
0.792 (+/-0.012) for {'classifier__max_depth': 14}
0.792 (+/-0.013) for {'classifier__max_depth': 15}
0.791 (+/-0.015) for {'classifier__max_depth': 16}
0.790 (+/-0.013) for {'classifier__max_depth': 17}
0.791 (+/-0.012) for {'classifier__max_depth': 18}
0.788 (+/-0.016) for {'classifier__max_depth': 19}
number training events = 36125
Fitting 5 folds for each of 19 candidates, totalling 95 fits
[Parallel(n_jobs=10)]: Done 30 tasks | elapsed: 9.3s
[Parallel(n_jobs=10)]: Done 95 out of 95 | elapsed: 44.3s finished
best GS CV score = 0.793134948097
best GS CV depths = {'classifier__max_depth': 14}
Grid scores on development set:
0.704 (+/-0.004) for {'classifier__max_depth': 1}
0.718 (+/-0.006) for {'classifier__max_depth': 2}
0.726 (+/-0.005) for {'classifier__max_depth': 3}
0.734 (+/-0.005) for {'classifier__max_depth': 4}
0.750 (+/-0.010) for {'classifier__max_depth': 5}
0.763 (+/-0.007) for {'classifier__max_depth': 6}
0.775 (+/-0.007) for {'classifier__max_depth': 7}
0.782 (+/-0.007) for {'classifier__max_depth': 8}
0.789 (+/-0.008) for {'classifier__max_depth': 9}
0.791 (+/-0.007) for {'classifier__max_depth': 10}
0.791 (+/-0.009) for {'classifier__max_depth': 11}
0.792 (+/-0.009) for {'classifier__max_depth': 12}
0.792 (+/-0.011) for {'classifier__max_depth': 13}
0.793 (+/-0.012) for {'classifier__max_depth': 14}
0.792 (+/-0.010) for {'classifier__max_depth': 15}
0.791 (+/-0.011) for {'classifier__max_depth': 16}
0.790 (+/-0.010) for {'classifier__max_depth': 17}
0.790 (+/-0.012) for {'classifier__max_depth': 18}
0.790 (+/-0.013) for {'classifier__max_depth': 19}
number training events = 36125
Fitting 5 folds for each of 19 candidates, totalling 95 fits
[Parallel(n_jobs=10)]: Done 30 tasks | elapsed: 10.0s
[Parallel(n_jobs=10)]: Done 95 out of 95 | elapsed: 44.7s finished
best GS CV score = 0.801467128028
best GS CV depths = {'classifier__max_depth': 12}
Grid scores on development set:
0.700 (+/-0.038) for {'classifier__max_depth': 1}
0.722 (+/-0.007) for {'classifier__max_depth': 2}
0.732 (+/-0.007) for {'classifier__max_depth': 3}
0.742 (+/-0.007) for {'classifier__max_depth': 4}
0.760 (+/-0.007) for {'classifier__max_depth': 5}
0.772 (+/-0.008) for {'classifier__max_depth': 6}
0.786 (+/-0.007) for {'classifier__max_depth': 7}
0.792 (+/-0.006) for {'classifier__max_depth': 8}
0.795 (+/-0.006) for {'classifier__max_depth': 9}
0.797 (+/-0.012) for {'classifier__max_depth': 10}
0.800 (+/-0.011) for {'classifier__max_depth': 11}
0.801 (+/-0.010) for {'classifier__max_depth': 12}
0.800 (+/-0.008) for {'classifier__max_depth': 13}
0.800 (+/-0.012) for {'classifier__max_depth': 14}
0.801 (+/-0.011) for {'classifier__max_depth': 15}
0.800 (+/-0.013) for {'classifier__max_depth': 16}
0.800 (+/-0.011) for {'classifier__max_depth': 17}
0.798 (+/-0.012) for {'classifier__max_depth': 18}
0.798 (+/-0.012) for {'classifier__max_depth': 19}
number training events = 36125
Fitting 5 folds for each of 19 candidates, totalling 95 fits
[Parallel(n_jobs=10)]: Done 30 tasks | elapsed: 9.1s
[Parallel(n_jobs=10)]: Done 95 out of 95 | elapsed: 45.5s finished
best GS CV score = 0.810408304498
best GS CV depths = {'classifier__max_depth': 13}
Grid scores on development set:
0.659 (+/-0.008) for {'classifier__max_depth': 1}
0.729 (+/-0.006) for {'classifier__max_depth': 2}
0.743 (+/-0.007) for {'classifier__max_depth': 3}
0.750 (+/-0.003) for {'classifier__max_depth': 4}
0.767 (+/-0.007) for {'classifier__max_depth': 5}
0.783 (+/-0.007) for {'classifier__max_depth': 6}
0.792 (+/-0.005) for {'classifier__max_depth': 7}
0.797 (+/-0.008) for {'classifier__max_depth': 8}
0.803 (+/-0.007) for {'classifier__max_depth': 9}
0.806 (+/-0.007) for {'classifier__max_depth': 10}
0.808 (+/-0.004) for {'classifier__max_depth': 11}
0.808 (+/-0.005) for {'classifier__max_depth': 12}
0.810 (+/-0.004) for {'classifier__max_depth': 13}
0.807 (+/-0.005) for {'classifier__max_depth': 14}
0.808 (+/-0.005) for {'classifier__max_depth': 15}
0.808 (+/-0.004) for {'classifier__max_depth': 16}
0.807 (+/-0.007) for {'classifier__max_depth': 17}
0.809 (+/-0.008) for {'classifier__max_depth': 18}
0.807 (+/-0.005) for {'classifier__max_depth': 19}