In [12]:
import numpy as np
import pandas as pd
import timeit
from keras.models import Sequential
from keras.layers.core import Dense
train = pd.read_csv('/home/jake/kaggle/liberty_mutual_property_inspection/input/train_dummies.csv')
test = pd.read_csv('/home/jake/kaggle/liberty_mutual_property_inspection/input/test_dummies.csv')
X_train = train.drop('Hazard', axis=1).values.astype(np.float32)/255
y_train = train.Hazard.values.astype(np.float32).reshape(-1, 1)
X_test = test.values.astype(np.float32)/255
in_dim = X_train.shape[1]
out_dim = 1
In [25]:
t0 = timeit.default_timer()
model = Sequential()
model.add(Dense(in_dim, 256, activation='relu'))
model.add(Dense(256, 256, activation='relu'))
model.add(Dense(256, out_dim))
model.compile(loss='mse', optimizer='rmsprop')
print('Build time: {:.3f} s'.format(timeit.default_timer()-t0))
In [26]:
model.fit(X_train, y_train, nb_epoch=5, batch_size=128)
Out[26]:
In [ ]: