Visualization 1: Matplotlib Basics Exercises


In [2]:
%matplotlib inline
import matplotlib.pyplot as plt
import numpy as np

Scatter plots

Learn how to use Matplotlib's plt.scatter function to make a 2d scatter plot.

  • Generate random data using np.random.randn.
  • Style the markers (color, size, shape, alpha) appropriately.
  • Include an x and y label and title.

In [3]:
x = np.random.randn(25)
y= np.random.randn(25)
plt.scatter(x,y, c = 'c', alpha = 0.7 , s=60, marker = '*')
plt.xlabel('x')
plt.ylabel('y')
plt.title('Random Data')
plt.box(False)


Histogram

Learn how to use Matplotlib's plt.hist function to make a 1d histogram.

  • Generate randpom data using np.random.randn.
  • Figure out how to set the number of histogram bins and other style options.
  • Include an x and y label and title.

In [6]:
data = np.random.randn(100)
plt.hist(data, bins=10, color="green", alpha=0.6)
plt.title('Random Data Histogram')
plt.xlabel('Number')
plt.ylabel('Times Generated')
plt.box(False)



In [ ]: