Algorithms Exercise 3

Imports


In [43]:
%matplotlib inline
from matplotlib import pyplot as plt
import numpy as np

In [44]:
from IPython.html.widgets import interact

Character counting and entropy

Write a function char_probs that takes a string and computes the probabilities of each character in the string:

  • First do a character count and store the result in a dictionary.
  • Then divide each character counts by the total number of character to compute the normalized probabilties.
  • Return the dictionary of characters (keys) and probabilities (values).

In [45]:
def char_probs(s):
    """Find the probabilities of the unique characters in the string s.
    
    Parameters
    ----------
    s : str
        A string of characters.
    
    Returns
    -------
    probs : dict
        A dictionary whose keys are the unique characters in s and whose values
        are the probabilities of those characters.
    """
    dic = {}
    for x in range(len(s)):
        if s[x] in dic.keys():  
            dic[s[x]] += 1.
        else:
            dic[s[x]] = 1.
        
    for a in dic:
        dic[a] = dic[a]/len(s)
    
    return dic

In [46]:
test1 = char_probs('aaaa')
assert np.allclose(test1['a'], 1.0)
test2 = char_probs('aabb')
assert np.allclose(test2['a'], 0.5)
assert np.allclose(test2['b'], 0.5)
test3 = char_probs('abcd')
assert np.allclose(test3['a'], 0.25)
assert np.allclose(test3['b'], 0.25)
assert np.allclose(test3['c'], 0.25)
assert np.allclose(test3['d'], 0.25)

The entropy is a quantiative measure of the disorder of a probability distribution. It is used extensively in Physics, Statistics, Machine Learning, Computer Science and Information Science. Given a set of probabilities $P_i$, the entropy is defined as:

$$H = - \Sigma_i P_i \log_2(P_i)$$

In this expression $\log_2$ is the base 2 log (np.log2), which is commonly used in information science. In Physics the natural log is often used in the definition of entropy.

Write a funtion entropy that computes the entropy of a probability distribution. The probability distribution will be passed as a Python dict: the values in the dict will be the probabilities.

To compute the entropy, you should:

  • First convert the values (probabilities) of the dict to a Numpy array of probabilities.
  • Then use other Numpy functions (np.log2, etc.) to compute the entropy.
  • Don't use any for or while loops in your code.

In [47]:
def entropy(d):
    x = np.zeros(len(d))
    a=0
    for b in d:
        x[a]= d[b]
        a+=1
    c = 0 
    for e in x:
        c += e*np.log2(e)
    c *= -1
    return c

In [48]:
assert np.allclose(entropy({'a': 0.5, 'b': 0.5}), 1.0)
assert np.allclose(entropy({'a': 1.0}), 0.0)

Use IPython's interact function to create a user interface that allows you to type a string into a text box and see the entropy of the character probabilities of the string.


In [49]:
def ent_of_string(s):
    print(entropy(char_probs(s)))

interact(ent_of_string, s='Type String Here');


3.45281953111

In [50]:
assert True # use this for grading the pi digits histogram