In [1]:
import numpy as np
import pandas as pd
from os.path import join

from pylab import rcParams
import matplotlib.pyplot as plt
%matplotlib inline
rcParams['figure.figsize'] = (13, 6)
plt.style.use('ggplot')
import nilmtk
from nilmtk import DataSet, TimeFrame, MeterGroup, HDFDataStore
from nilmtk.disaggregate import CombinatorialOptimisation, fhmm_exact
from nilmtk.utils import print_dict
from nilmtk.metrics import f1_score

import warnings
warnings.filterwarnings("ignore")

In [3]:
data_dir = '/Users/nipunbatra/Downloads/'
we = DataSet(join(data_dir, 'redd.h5'))
print('loaded ' + str(len(we.buildings)) + ' buildings')


loaded 6 buildings

In [4]:
building_number = 1
print_dict(we.buildings[building_number].metadata)


  • instance: 1
  • dataset: REDD
  • original_name: house_1

In [7]:
we.buildings[building_number].elec.draw_wiring_graph()


Out[7]:
(<networkx.classes.digraph.DiGraph at 0x10a7fdfd0>,
 <matplotlib.axes._axes.Axes at 0x10a7fdcd0>)

In [ ]: