In [1]:
import matplotlib.pyplot as plt

import pandas as pd
from pandas import DataFrame
import numpy as np

%matplotlib inline

In [2]:
#make random dataframe
df = DataFrame(np.random.randn(10, 4).cumsum(0),
                columns=['A', 'B', 'C', 'D'],
                index=np.arange(0, 100, 10)) #0 to 100, at intervals of 10

In [9]:
# turn a column into a sequence
s = df.ix[:,1] #sequence = dataframe 3rd column. index modifier?
type(s)
print s


0    -0.087359
10    0.349096
20   -1.042686
30   -1.200931
40   -1.630742
50   -1.690428
60    1.038322
70    0.369046
80   -0.506361
90   -0.494912
Name: B, dtype: float64

In [4]:
df


Out[4]:
A B C D
0 -0.306899 -0.087359 1.100918 0.109715
10 -0.037300 0.349096 1.845239 1.667171
20 2.089129 -1.042686 1.697987 2.545941
30 1.160612 -1.200931 1.061789 2.646248
40 2.470987 -1.630742 0.663063 2.812492
50 2.218397 -1.690428 1.692802 2.781486
60 3.525866 1.038322 -0.459330 3.102383
70 3.934671 0.369046 -1.678545 1.988175
80 3.586243 -0.506361 -2.305494 1.267270
90 4.126378 -0.494912 -1.972927 0.703763

In [13]:
plt.figure() #http://matplotlib.org/api/figure_api.html customize the image
df.plot()
x=1
plt.title('Random')
plt.xlabel('Random X')
plt.ylabel('Random Y')
plt.xticks()        
    
plt.show()


<matplotlib.figure.Figure at 0x113d541d0>

In [10]:
from pandas.tools.plotting import bootstrap_plot
bootstrap_plot(s, size=5, samples=10, color='blue')


Out[10]:

In [ ]: