In [1]:
import pandas as pd
In [2]:
fileName = '../Data/StreamCat/NLCD2006_NC.zip'
In [11]:
df = pd.read_csv(fileName,index_col='COMID')
In [13]:
df.head()
Out[13]:
CatAreaSqKm
WsAreaSqKm
CatPctFull
WsPctFull
PctOw2006Cat
PctIce2006Cat
PctUrbOp2006Cat
PctUrbLo2006Cat
PctUrbMd2006Cat
PctUrbHi2006Cat
...
PctBl2006Ws
PctDecid2006Ws
PctConif2006Ws
PctMxFst2006Ws
PctShrb2006Ws
PctGrs2006Ws
PctHay2006Ws
PctCrop2006Ws
PctWdWet2006Ws
PctHbWet2006Ws
COMID
25955618
0.1683
2715.8274
100.0
100.0
16.577540
0.0
0.000000
0.000000
0.000000
0.000000
...
0.065880
56.027301
9.282784
2.660935
1.854131
4.971557
17.289516
0.217160
0.429052
0.020447
8680029
4.0923
34.3890
100.0
100.0
20.541016
0.0
5.080273
4.068617
4.090609
2.595118
...
0.013086
41.664486
11.994242
1.939283
1.240513
7.644596
20.738027
0.107302
1.002355
0.209369
8680033
0.7200
5.0850
100.0
100.0
8.750000
0.0
4.000000
0.500000
0.000000
0.000000
...
0.000000
43.362832
9.451327
1.699115
1.168142
7.734513
29.823009
0.000000
0.000000
0.000000
8673761
1.2267
4684.5945
100.0
100.0
6.896552
0.0
0.586941
0.146735
0.000000
0.000000
...
0.067953
57.755050
8.854519
3.048123
1.718928
4.464675
15.218367
0.187239
0.338917
0.019077
8680001
0.1053
14.2371
100.0
100.0
6.837607
0.0
0.000000
0.000000
0.000000
0.000000
...
0.000000
56.343637
7.187559
2.907896
2.105064
4.393451
22.125292
0.082180
0.075858
0.031608
5 rows × 36 columns
Content source: johnpfay/environ859
Similar notebooks: