In [2]:
from dataingestion.initial_input import InitialInput
from const.constants import Constants
from dataingestion.preprocessing import preprocess_basic
from dataingestion.cache_control import *
const = Constants()
init_input = InitialInput(const)
data = None
if not has_preprocess_basic_cache(const):
data = init_input.read_all_data_init()
data = preprocess_basic(data,const)
preprocess data
[64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84]
[u'0_Thumb_base', u'1_Thumb_pressure', u'2_Angle_between_thumb_and_hand', u'3_Finger_1_base', u'4_Finger_1_tip', u'5_Finger_2_base', u'6_Finger_2_tip', u'7_Finger_3_base', u'8_Finger_3_tip', u'9_Finger_4_base', u'10_Finger_4_tip', u'11_Thumb_tip', u'12_Finger_1_pressure', u'13_Finger_2_pressure', u'14_Finger_3_pressure', u'15_Finger_4_pressure', u'16_Wrist_extension', u'17_Wrist_flexion', u'18_Finger_1_Accel_X', u'19_Finger_1_Accel_Y', u'20_Finger_1_Accel_Z', u'21_Finger_1_Gyro_X', u'22_Finger_1_Gyro_Y', u'23_Finger_1_Gyro_Z', u'24_Finger_2_Accel_X', u'25_Finger_2_Accel_Y', u'26_Finger_2_Accel_Z', u'27_Finger_2_Gyro_X', u'28_Finger_2_Gyro_Y', u'29_Finger_2_Gyro_Z', u'30_Finger_3_Accel_X', u'31_Finger_3_Accel_Y', u'32_Finger_3_Accel_Z', u'33_Finger_3_Gyro_X', u'34_Finger_3_Gyro_Y', u'35_Finger_3_Gyro_Z', u'36_Finger_4_Accel_X', u'37_Finger_4_Accel_Y', u'38_Finger_4_Accel_Z', u'39_Finger_4_Gyro_X', u'40_Finger_4_Gyro_Y', u'41_Finger_4_Gyro_Z', u'42_Thumb_Accel_X', u'43_Thumb_Accel_Y', u'44_Thumb_Accel_Z', u'45_Thumb_Gyro_X', u'46_Thumb_Gyro_Y', u'47_Thumb_Gyro_Z', u'48_Palm_Accel_X', u'49_Palm_Accel_Y', u'50_Palm_Accel_Z', u'51_Palm_Gyro_X', u'52_Palm_Gyro_Y', u'53_Palm_Gyro_Z', u'54_Wrist_Accel_X', u'55_Wrist_Accel_Y', u'56_Wrist_Accel_Z', u'57_Wrist_Gyro_X', u'58_Wrist_Gyro_Y', u'59_Wrist_Gyro_Z', u'60_Magnetometer_X', u'61_Magnetometer_Y', u'62_Magnetometer_Z', u'63_Magnetometer_X_ignore_double', u'64_Magnetometer_Y_ignore_double', u'65_Magnetometer_Z_ignore_double', 'gesture', '64_Finger_1_Accel_X_lin_accel', '65_Finger_1_Accel_Y_lin_accel', '66_Finger_1_Accel_Z_lin_accel', '67_Finger_2_Accel_X_lin_accel', '68_Finger_2_Accel_Y_lin_accel', '69_Finger_2_Accel_Z_lin_accel', '70_Finger_3_Accel_X_lin_accel', '71_Finger_3_Accel_Y_lin_accel', '72_Finger_3_Accel_Z_lin_accel', '73_Finger_4_Accel_X_lin_accel', '74_Finger_4_Accel_Y_lin_accel', '75_Finger_4_Accel_Z_lin_accel', '76_Thumb_Accel_X_lin_accel', '77_Thumb_Accel_Y_lin_accel', '78_Thumb_Accel_Z_lin_accel', '79_Palm_Accel_X_lin_accel', '80_Palm_Accel_Y_lin_accel', '81_Palm_Accel_Z_lin_accel', '82_Wrist_Accel_X_lin_accel', '83_Wrist_Accel_Y_lin_accel', '84_Wrist_Accel_Z_lin_accel']
KeyErrorTraceback (most recent call last)
<ipython-input-2-70b70ab44856> in <module>()
9 if not has_preprocess_basic_cache(const):
10 data = init_input.read_all_data_init()
---> 11 data = preprocess_basic(data,const)
/Volumes/Data/Documents/gesture-analysis/dataingestion/preprocessing.pyc in preprocess_basic(data, const)
16 convert_values(data,const)
17 convolution_filter(data,const)
---> 18 compute_orientation_indipendent_accel(data,const)
19 data.to_pickle(const.preprocessed_data_cache_file)
20 const.save_preprocess_updates()
/Volumes/Data/Documents/gesture-analysis/dataingestion/preprocessing.pyc in compute_orientation_indipendent_accel(data, const)
74 def compute_orientation_indipendent_accel(data,const):
75 absolute_something("accel","absolute_froce",data,const)
---> 76 absolute_something("lin_accel", "absolute_lin_froce", data, const)
77 direction_cosine(data,const)
78
/Volumes/Data/Documents/gesture-analysis/dataingestion/preprocessing.pyc in absolute_something(type, new_type, data, const)
80 for i in range(const.number_imus):
81 headers = const.get_triples(type,i)
---> 82 sqsum = data[headers[0]]**2 + data[headers[1]]**2 + data[headers[2]]**2
83 header0 = headers[0]
84 old_index = const.raw_headers.index(header0)
/usr/local/var/pyenv/versions/2.7.11/envs/master_/lib/python2.7/site-packages/pandas/core/frame.pyc in __getitem__(self, key)
1967 return self._getitem_multilevel(key)
1968 else:
-> 1969 return self._getitem_column(key)
1970
1971 def _getitem_column(self, key):
/usr/local/var/pyenv/versions/2.7.11/envs/master_/lib/python2.7/site-packages/pandas/core/frame.pyc in _getitem_column(self, key)
1974 # get column
1975 if self.columns.is_unique:
-> 1976 return self._get_item_cache(key)
1977
1978 # duplicate columns & possible reduce dimensionality
/usr/local/var/pyenv/versions/2.7.11/envs/master_/lib/python2.7/site-packages/pandas/core/generic.pyc in _get_item_cache(self, item)
1089 res = cache.get(item)
1090 if res is None:
-> 1091 values = self._data.get(item)
1092 res = self._box_item_values(item, values)
1093 cache[item] = res
/usr/local/var/pyenv/versions/2.7.11/envs/master_/lib/python2.7/site-packages/pandas/core/internals.pyc in get(self, item, fastpath)
3209
3210 if not isnull(item):
-> 3211 loc = self.items.get_loc(item)
3212 else:
3213 indexer = np.arange(len(self.items))[isnull(self.items)]
/usr/local/var/pyenv/versions/2.7.11/envs/master_/lib/python2.7/site-packages/pandas/core/index.pyc in get_loc(self, key, method, tolerance)
1757 'backfill or nearest lookups')
1758 key = _values_from_object(key)
-> 1759 return self._engine.get_loc(key)
1760
1761 indexer = self.get_indexer([key], method=method,
pandas/index.pyx in pandas.index.IndexEngine.get_loc (pandas/index.c:3979)()
pandas/index.pyx in pandas.index.IndexEngine.get_loc (pandas/index.c:3843)()
pandas/hashtable.pyx in pandas.hashtable.PyObjectHashTable.get_item (pandas/hashtable.c:12265)()
pandas/hashtable.pyx in pandas.hashtable.PyObjectHashTable.get_item (pandas/hashtable.c:12216)()
KeyError: u'64_Magnetometer_Y_ignore_double'
In [1]:
data
NameErrorTraceback (most recent call last)
<ipython-input-1-6137cde4893c> in <module>()
----> 1 data
NameError: name 'data' is not defined
In [3]:
data['58_Wrist_Gyro_Y'].describe()
Out[3]:
count 120138.000000
mean 0.279639
std 7.747471
min -106.314122
25% -0.451527
50% -0.008779
75% 0.479771
max 99.960687
Name: 58_Wrist_Gyro_Y, dtype: float64
In [4]:
data['56_Wrist_Accel_Z'].describe()
Out[4]:
count 120138.000000
mean 0.339534
std 0.161444
min -2.000000
25% 0.331055
50% 0.379395
75% 0.425171
max 1.394287
Name: 56_Wrist_Accel_Z, dtype: float64
In [ ]:
len(data.columns)
In [9]:
from dataingestion.clear_cache import clear_cache
clear_cache(["step2"],const)
In [ ]:
Content source: joergsimon/gesture-analysis
Similar notebooks: