In [1]:
from vega import VegaLite
In [2]:
import pandas as pd
from altair import Chart, X, Y, Axis, EncodingSortField, datum
budget = pd.read_csv("https://github.com/chris1610/pbpython/raw/master/data/mn-budget-detail-2014.csv")
budget.head()
Out[2]:
In [3]:
budget_top_10 = budget.sort_values(by='amount',ascending=False)[:10]
In [4]:
Chart(budget_top_10).mark_bar().encode(x='detail', y='amount')
Out[4]:
In [5]:
Chart(budget_top_10).mark_bar().encode(y='detail', x='amount')
Out[5]:
In [6]:
Chart(budget_top_10).mark_bar().encode(
x=X('detail'),
y=Y('amount'),
color='category')
Out[6]:
In [7]:
Chart(budget).mark_bar().encode(
x=X('detail:O', sort=EncodingSortField(field='amount', order='descending', op='sum'),
axis=Axis(title='Project')),
y=Y('amount:Q',
axis=Axis(title='2014 Budget')),
color='category').transform_filter(
(datum.amount >= 10000000)
)
Out[7]:
In [8]:
c = Chart(budget).mark_bar().encode(
y=Y('category', sort=EncodingSortField(field='amount', order='descending', op='sum'),
axis=Axis(title='Category')),
x=X('sum(amount)',
axis=Axis(title='2014 Budget')))
c
Out[8]:
In [ ]:
import altair as alt
from vega_datasets import data
cars = data.cars.url
alt.Chart(cars).mark_point().encode(
x='Horsepower:Q',
y='Miles_per_Gallon:Q',
color=alt.Color('Acceleration:Q', bin=alt.Bin(maxbins=5))
)
In [ ]: