In [ ]:
import time
import re
import torch
import torchvision
import torchvision.models as models
import torchvision.transforms as transforms
import torchvision.datasets as datasets
#import torchvision
# from torchvision.utils import make_grid
from PIL import Image
import copy
#from skimage import io #, transform
import matplotlib.pyplot as plt
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
# import torch.utils.trainer as trainer
# import torch.utils.trainer.plugins
from torch.utils.data import Dataset, DataLoader
from torch.autograd import Variable
# import shutil, errno
from tqdm import tqdm_notebook
import data_science.j_utils as j_utils
# from torchsample.modules import ModuleTrainer
# from torchsample.metrics import CategoricalAccuracy

%matplotlib notebook
# %pdb

In [ ]:
use_cuda = torch.cuda.is_available()
dtype = torch.cuda.FloatTensor if use_cuda else torch.FloatTensor

In [ ]:
# desired size of the output image
imsize = 512 if use_cuda else 128  # use small size if no gpu

loader = transforms.Compose([
    transforms.Scale(imsize),  # scale imported image
    transforms.CenterCrop(imsize),
    transforms.ToTensor()])  # transform it into a torch tensor


def image_loader(image_name):
    image = Image.open(image_name)
    image = Variable(loader(image))
    # fake batch dimension required to fit network's input dimensions
    image = image.unsqueeze(0)
    return image


style_img = image_loader("images/picasso.jpg").type(dtype)
content_img = image_loader("images/woman_ladder_bluegreen.jpg").type(dtype)

# if style_img.size() != content_img.size():
#     h1, w1 = style_img.size()[2:]
#     h2, w2 = content_img.size()[2:]
#     center_crop = transforms.Compose([transforms.ToPILImage(), transforms.CenterCrop(min(h1,w1,h2,w2)), transforms.ToTensor()])
#     style_img = center_crop(orig_style_img)
#     content_img = center_crop(orig_content_img)

In [ ]:
assert style_img.size() == content_img.size(), \
    "we need to import style and content images of the same size"

In [ ]:
unloader = transforms.ToPILImage()  # reconvert into PIL image

plt.ion()

def imshow(tensor, title=None):
    image = tensor.clone().cpu()  # we clone the tensor to not do changes on it
    image = image.view(3, imsize, imsize)  # remove the fake batch dimension
    image = unloader(image)
    plt.imshow(image)
    if title is not None:
        plt.title(title)
#     plt.pause(0.001) # pause a bit so that plots are updated


plt.figure()
imshow(style_img.data, title='Style Image')

plt.figure()
imshow(content_img.data, title='Content Image')

In [ ]:
class ContentLoss(nn.Module):

    def __init__(self, target, weight):
        super(ContentLoss, self).__init__()
        # we 'detach' the target content from the tree used
        self.target = target.detach() * weight
        # to dynamically compute the gradient: this is a stated value,
        # not a variable. Otherwise the forward method of the criterion
        # will throw an error.
        self.weight = weight
        self.criterion = nn.MSELoss()

    def forward(self, input):
        self.loss = self.criterion(input * self.weight, self.target)
        self.output = input
        return self.output

    def backward(self, retain_graph=True):
        self.loss.backward(retain_graph=retain_graph)
        return self.loss

In [ ]:
class GramMatrix(nn.Module):

    def forward(self, input):
        a, b, c, d = input.size()  # a=batch size(=1)
        # b=number of feature maps
        # (c,d)=dimensions of a f. map (N=c*d)

        features = input.view(a * b, c * d)  # resise F_XL into \hat F_XL

        G = torch.mm(features, features.t())  # compute the gram product

        # we 'normalize' the values of the gram matrix
        # by dividing by the number of element in each feature maps.
        return G.div(a * b * c * d)

In [ ]:
class StyleLoss(nn.Module):

    def __init__(self, target, weight):
        super(StyleLoss, self).__init__()
        self.target = target.detach() * weight
        self.weight = weight
        self.gram = GramMatrix()
        self.criterion = nn.MSELoss()

    def forward(self, input):
        self.output = input.clone()
        self.G = self.gram(input)
        self.G.mul_(self.weight)
        self.loss = self.criterion(self.G, self.target)
        return self.output

    def backward(self, retain_graph=True):
        self.loss.backward(retain_graph=retain_graph)
        return self.loss

In [ ]:
cnn = models.vgg19_bn(pretrained=True).features

# move it to the GPU if possible:
if use_cuda:
    cnn = cnn.cuda()

In [ ]:
# desired depth layers to compute style/content losses :
content_layers_default = ['conv_4']
style_layers_default = ['conv_1', 'conv_2', 'conv_3', 'conv_4', 'conv_5']


def get_style_model_and_losses(cnn, style_img, content_img,
                               style_weight=1000, content_weight=1,
                               content_layers=content_layers_default,
                               style_layers=style_layers_default):
    cnn = copy.deepcopy(cnn)

    # just in order to have an iterable access to or list of content/syle
    # losses
    content_losses = []
    style_losses = []

    model = nn.Sequential()  # the new Sequential module network
    gram = GramMatrix()  # we need a gram module in order to compute style targets

    # move these modules to the GPU if possible:
    if use_cuda:
        model = model.cuda()
        gram = gram.cuda()

    i = 1
    for layer in list(cnn):
        if isinstance(layer, nn.Conv2d):
            name = "conv_" + str(i)
            model.add_module(name, layer)

            if name in content_layers:
                # add content loss:
                target = model(content_img).clone()
                content_loss = ContentLoss(target, content_weight)
                model.add_module("content_loss_" + str(i), content_loss)
                content_losses.append(content_loss)

            if name in style_layers:
                # add style loss:
                target_feature = model(style_img).clone()
                target_feature_gram = gram(target_feature)
                style_loss = StyleLoss(target_feature_gram, style_weight)
                model.add_module("style_loss_" + str(i), style_loss)
                style_losses.append(style_loss)

        if isinstance(layer, nn.ReLU):
            name = "relu_" + str(i)
            model.add_module(name, layer)

            if name in content_layers:
                # add content loss:
                target = model(content_img).clone()
                content_loss = ContentLoss(target, content_weight)
                model.add_module("content_loss_" + str(i), content_loss)
                content_losses.append(content_loss)

            if name in style_layers:
                # add style loss:
                target_feature = model(style_img).clone()
                target_feature_gram = gram(target_feature)
                style_loss = StyleLoss(target_feature_gram, style_weight)
                model.add_module("style_loss_" + str(i), style_loss)
                style_losses.append(style_loss)

            i += 1

        if isinstance(layer, nn.MaxPool2d):
            name = "pool_" + str(i)
            model.add_module(name, layer)  # ***

    return model, style_losses, content_losses

In [ ]:
input_img = content_img.clone()
# if you want to use a white noise instead uncomment the below line:
# input_img = Variable(torch.randn(content_img.data.size())).type(dtype)

# add the original input image to the figure:
plt.figure()
imshow(input_img.data, title='Input Image')

In [ ]:
def get_input_param_optimizer(input_img):
    # this line to show that input is a parameter that requires a gradient
    input_param = nn.Parameter(input_img.data)
    optimizer = optim.LBFGS([input_param])
    return input_param, optimizer

In [ ]:
def run_style_transfer(cnn, content_img, style_img, input_img, num_steps=300,
                       style_weight=1000, content_weight=1):
    """Run the style transfer."""
    print('Building the style transfer model..')
    model, style_losses, content_losses = get_style_model_and_losses(cnn,
        style_img, content_img, style_weight, content_weight)
    input_param, optimizer = get_input_param_optimizer(input_img)

    print('Optimizing..')
    run = [0]
    while run[0] <= num_steps:

        def closure():
            # correct the values of updated input image
            input_param.data.clamp_(0, 1)

            optimizer.zero_grad()
            model(input_param)
            style_score = 0
            content_score = 0

            for sl in style_losses:
                style_score += sl.backward()
            for cl in content_losses:
                content_score += cl.backward()

            run[0] += 1
            if run[0] % 50 == 0:
                print("run {}:".format(run))
                print('Style Loss : {:4f} Content Loss: {:4f}'.format(
                    style_score.data[0], content_score.data[0]))
                print()

            return style_score + content_score

        optimizer.step(closure)

    # a last correction...
    input_param.data.clamp_(0, 1)

    return input_param.data

In [ ]:
output = run_style_transfer(cnn, content_img, style_img, input_img, num_steps=100, style_weight=10000, content_weight = 1)

plt.figure()
imshow(output, title='Output Image')

# sphinx_gallery_thumbnail_number = 4
plt.ioff()
plt.show()

In [ ]: