In [1]:
import sympy as sp
sp.init_printing(use_latex=True)
from sympy.matrices import zeros
tau_m, tau_s, C, h = sp.symbols('tau_m, tau_s, C, h')
For alpha-shaped currents we have:
In [2]:
A = sp.Matrix([[-1/tau_s,0,0],[1,-1/tau_s,0],[0,1/C,-1/tau_m]])
In [3]:
PA = sp.simplify(sp.exp(A*h))
PA
Out[3]:
Note that the entry in the third line and the second column $A_{32}$ would also appear in the propagator matrix in case of an exponentially shaped current
In [4]:
As = sp.Matrix([[-1/tau_m,0,0],[1,-1/tau_m,0],[0,1/C,-1/tau_m]])
As
Out[4]:
The propagator is
In [5]:
PAs = sp.simplify(sp.exp(As*h))
PAs
Out[5]:
In [6]:
PA_32 = PA.row(2).col(1)[0]
sp.limit(PA_32, tau_s, tau_m)
Out[6]:
$2.$ The Taylor-series up to the second order of the function $PA_{32}(\tau_s)$ is:
In [7]:
PA_32_series = PA_32.series(x=tau_s,x0=tau_m,n=2)
PA_32_series
Out[7]:
Therefore we have
$T(PA_{32}(\tau_s,\tau_m))=PAs_{32}+PA_{32}^{lin}+O(2)$ where $PA_{32}^{lin}=h^2(-\tau_m + \tau_s)*exp(-h/\tau_m)/(2C\tau_m^2)$
$3.$ We define
$dev:=|PA_{32}-PAs_{32}|$
We also define $PA_{32}^{real}$ which is the correct value of P32 without misscalculation (instability).
In the following we assume $0<|\tau_s-\tau_m|<0.1$. We consider two different cases
a) When $dev \geq 2|PA_{32}^{lin}|$ we do not trust the numeric evaluation of $PA_{32}$, since it strongly deviates from the first order correction. In this case the error we make is
$|PAs_{32}-PA_{32}^{real}|\approx |P_{32}^{lin}|$
b) When $dev \le |2PA_{32}^{lin}|$ we trust the numeric evaluation of $PA_{32}$. In this case the maximal error occurs when $dev\approx 2 PA_{32}^{lin}$ due to numeric instabilities. The order of the error is again
$|PAs_{32}-PA_{32}^{real}|\approx |P_{32}^{lin}|$
The entry $A_{31}$ is numerically unstable, too and we treat it analogously.
In [8]:
import nest
import numpy as np
import pylab as pl
Neuron, simulation and plotting parameters
In [9]:
taum = 10.
C_m = 250.
# array of distances between tau_m and tau_ex
epsilon_array = np.hstack(([0.],10.**(np.arange(-6.,1.,1.))))[::-1]
dt = 0.1
fig = pl.figure(1)
NUM_COLORS = len(epsilon_array)
cmap = pl.get_cmap('gist_ncar')
maxVs = []
Loop through epsilon array
In [10]:
for i,epsilon in enumerate(epsilon_array):
nest.ResetKernel() # reset simulation kernel
nest.SetKernelStatus({'resolution':dt})
# Current based alpha neuron
neuron = nest.Create('iaf_psc_alpha')
nest.SetStatus(neuron,{'C_m':C_m,'tau_m':taum,'t_ref':0.,'V_reset':-70.,'V_th':1e32,
'tau_syn_ex':taum+epsilon,'tau_syn_in':taum+epsilon,'I_e':0.})
# create a spike generator
spikegenerator_ex=nest.Create('spike_generator')
nest.SetStatus(spikegenerator_ex,{'spike_times': [50.]})
# create a voltmeter
vm = nest.Create('voltmeter',params={'interval':dt})
## connect spike generator and voltmeter to the neuron
nest.Connect(spikegenerator_ex, neuron,'all_to_all',{'weight':100.})
nest.Connect(vm, neuron)
# run simulation for 200ms
nest.Simulate(200.)
# read out recording time and voltage from voltmeter
times=nest.GetStatus(vm)[0]['events']['times']
voltage=nest.GetStatus(vm)[0]['events']['V_m']
# store maximum value of voltage trace in array
maxVs.append(np.max(voltage))
# plot voltage trace
if epsilon == 0.:
pl.plot(times,voltage,'--',color='black',label='singular')
else:
pl.plot(times,voltage,color = cmap(1.*i/NUM_COLORS),label=str(epsilon))
pl.legend()
pl.xlabel('time t (ms)')
pl.ylabel('voltage V (mV)')
Out[10]:
Show maximum values of voltage traces
In [11]:
fig = pl.figure(2)
pl.semilogx(epsilon_array,maxVs,color='red',label='maxV')
#show singular solution as horizontal line
pl.semilogx(epsilon_array,np.ones(len(epsilon_array))*maxVs[-1],color='black',label='singular')
pl.xlabel('epsilon')
pl.ylabel('max(voltage V) (mV)')
pl.legend()
Out[11]:
In [12]:
pl.show()
The maximum of the voltage traces show that the non-singular case nicely converges to the singular one and no numeric instabilities occur.