In [53]:
import GPy as gp
%pylab osx
In [2]:
def gauss(x):
return np.exp(-x**2/25)
In [63]:
train_x = np.array([np.concatenate(([-6, -4], np.linspace(-3.1, -2.9, 50), [6]))]).T
train_y = gauss(train_x) # + 0.1 * np.random.randn(len(train_x), 1)
In [64]:
m = gp.models.GPRegression(train_x, train_y, gp.kern.rbf(1, lengthscale=5))
m['noise_variance'] = 0.001
In [65]:
m.plot()
print m
In [52]:
%magic
In [ ]: