******************************************************************************
This program contains Ipopt, a library for large-scale nonlinear optimization.
Ipopt is released as open source code under the Eclipse Public License (EPL).
For more information visit http://projects.coin-or.org/Ipopt
******************************************************************************
This is Ipopt version 3.11.9, running with linear solver mumps.
NOTE: Other linear solvers might be more efficient (see Ipopt documentation).
Number of nonzeros in equality constraint Jacobian...: 29
Number of nonzeros in inequality constraint Jacobian.: 0
Number of nonzeros in Lagrangian Hessian.............: 1
Total number of variables............................: 20
variables with only lower bounds: 0
variables with lower and upper bounds: 10
variables with only upper bounds: 0
Total number of equality constraints.................: 10
Total number of inequality constraints...............: 0
inequality constraints with only lower bounds: 0
inequality constraints with lower and upper bounds: 0
inequality constraints with only upper bounds: 0
iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls
0 1.0000000e+00 1.00e-02 1.75e-01 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0
1 8.6929583e-01 5.55e-17 1.03e-02 -1.0 1.01e-01 - 9.39e-01 1.00e+00f 1
2 3.3357878e-01 4.44e-16 1.62e-02 -1.7 1.41e+00 - 7.02e-01 1.00e+00f 1
3 1.0793001e-01 4.44e-16 2.11e-02 -2.5 6.11e-01 - 6.56e-01 1.00e+00f 1
4 3.1680767e-02 8.88e-16 1.11e-16 -2.5 4.92e-01 - 1.00e+00 1.00e+00f 1
5 6.8183109e-03 8.88e-16 2.43e-03 -3.8 2.15e-01 - 8.60e-01 1.00e+00f 1
6 1.1418229e-03 6.66e-16 5.55e-17 -3.8 1.49e-01 - 1.00e+00 1.00e+00f 1
7 6.7803447e-05 5.55e-16 1.73e-04 -5.7 7.15e-02 - 9.63e-01 1.00e+00f 1
8 8.2258868e-07 7.77e-16 3.14e-17 -5.7 2.15e-02 - 1.00e+00 1.00e+00f 1
9 2.6202735e-10 5.55e-16 6.10e-17 -7.0 2.74e-03 - 1.00e+00 1.00e+00f 1
Number of Iterations....: 9
(scaled) (unscaled)
Objective...............: 2.6202735175817607e-10 2.6202735175817607e-10
Dual infeasibility......: 6.1040582310933900e-17 6.1040582310933900e-17
Constraint violation....: 5.5511151231257827e-16 5.5511151231257827e-16
Complementarity.........: 2.8411303641615059e-07 2.8411303641615059e-07
Overall NLP error.......: 2.8411303641615059e-07 2.8411303641615059e-07
Number of objective function evaluations = 10
Number of objective gradient evaluations = 10
Number of equality constraint evaluations = 10
Number of inequality constraint evaluations = 0
Number of equality constraint Jacobian evaluations = 10
Number of inequality constraint Jacobian evaluations = 0
Number of Lagrangian Hessian evaluations = 9
Total CPU secs in IPOPT (w/o function evaluations) = 0.005
Total CPU secs in NLP function evaluations = 0.002
EXIT: Optimal Solution Found.
t_proc [s] t_wall [s] n_eval
nlp 0.00739 0.00688 1
nlp_f 2.5e-05 2.48e-05 10
nlp_g 0.000253 0.000253 10
nlp_grad_f 6.4e-05 6.21e-05 11
nlp_hess_l 0.000489 0.00049 9
nlp_jac_g 0.00099 0.00099 11
Out[1]:
<matplotlib.legend.Legend at 0x7fe76c6fcf28>