In [1]:
%pylab inline
import sympy
sympy.init_printing()
In [2]:
t0, t1, tau, Q, P, dt, T = sympy.symbols(
't0, t1, tau, Q, P, \Delta_t, T',
real=True, positive=True)
In [3]:
def Phi(t, tau):
return sympy.exp(-(t - tau)/T)
In [4]:
Q_d = sympy.integrate(Phi(t1, tau)*Q*Phi(t1, tau),
(tau, t0, t1)).simplify()
simp_subs = {
2*(t1 - t0): 2*dt,
(2*t0 - 2*t1)/T: -2*dt/T
}
Q_d = Q_d.simplify().subs(simp_subs)
Q_d
Out[4]:
In [5]:
dt = 1.0/250
T = 1000
gyro_sigma_rrw = 1e-5
gyro_sigma_rrw*gyro_sigma_rrw*T/2*(1 - exp(-2*dt/1000))
Out[5]: