In [59]:
m = 0.3
rho = 1.225
b = 1.7
s = 0.06
g = 9.8

From Pennycuick(1990), we can predict the wingbeat frequency of an equivalent bird with the equation:

$$ f = 1.08 m^{1/3} g^{1/2} b^{-1} S^{-1/4} \rho^{-1/3} $$

And we can predict the minimum power/ maximum range speed as:

$$ V = m^{1/2} g^{1/2} b^{-1} \rho^{-1/2} $$

In [39]:
f = 1.08*m**(1.0/3)*g**(1.0/2)*b**(-1)*s**(-1.0/4)*rho**(-1.0/3)
f


Out[39]:
2.514076265424935

In [38]:
v = 4.77*(m*1.0e3)**(1.0/6)
v


Out[38]:
12.341612929404564

In [58]:
lam = m**(1.0/6)*s**(1.0/4)*rho**(-1.0/6)
lam


Out[58]:
0.39147317389350833

In [41]:
lam = v/f
lam


Out[41]:
4.909004988883484

In [57]:
2/lam


Out[57]:
5.1089069018661695

In [ ]:
lam

Birds, have higher Reynold's number (Re), bodies smooth to fly with laminar flow.


In [ ]: