In [ ]:
import prettyplotlib as ppl

# prettyplotlib imports 
import matplotlib.pyplot as plt
from prettyplotlib import brewer2mpl

In [55]:
from collections import OrderedDict
try:
    from operators import *
except ImportError:
    import sys
    sys.path.append ( "../eoldas_ng/")
    from operators import *

state_config = OrderedDict ()

state_config['n'] = FIXED
state_config['cab'] = VARIABLE
state_config['car'] = FIXED
state_config['cbrown'] = FIXED
state_config['cw'] = FIXED
state_config['cm'] = FIXED
state_config['lai'] = VARIABLE
state_config['ala'] = FIXED
state_config['bsoil'] = FIXED
state_config['psoil'] = FIXED

    
    
    
    
# Now define the default values
default_par = OrderedDict ()
default_par['n'] = 1.5
default_par['cab'] = 40.
default_par['car'] = 10.
default_par['cbrown'] = 0.01
default_par['cw'] = 0.018 # Say?
default_par['cm'] = 0.0065 # Say?
default_par['lai'] = 2
default_par['ala'] = 45.
default_par['bsoil'] = 1.
default_par['psoil'] = 0.1

parameter_min = OrderedDict()
parameter_max = OrderedDict()
    
min_vals = [ 0.8, 0.2, 0.0, 0.0, 0.0043, 0.0017,0.01, 40, 0., 0., 0.]
max_vals = [2.5, 77., 5., 1., 0.0713, 0.0331, 8., 50., 2., 1.]

for i, param in enumerate ( state_config.keys() ):
    parameter_min[param] = min_vals[i]
    parameter_max[param] = max_vals[i]
    # Define parameter transformations
transformations = {
        'lai': lambda x: np.exp ( -x/2. ), \
        'cab': lambda x: np.exp ( -x/100. ), \
        'car': lambda x: np.exp ( -x/100. ), \
        'cw': lambda x: np.exp ( -50.*x ), \
        'cm': lambda x: np.exp ( -100.*x ), \
        'ala': lambda x: x/90. }
inv_transformations = {
        'lai': lambda x: -2*np.log ( x ), \
        'cab': lambda x: -100*np.log ( x ), \
        'car': lambda x: -100*np.log( x ), \
        'cw': lambda x: (-1/50.)*np.log ( x ), \
        'cm': lambda x: (-1/100.)*np.log ( x ), \
        'ala': lambda x: 90.*x }

# Define the state grid. In time in this case
state_grid = np.arange ( 1, 366 )
    
# Define the state
# L'etat, c'est moi
state = State ( state_config, state_grid, default_par, \
        parameter_min, parameter_max )
# Set the transformations
state.set_transformations ( transformations, inv_transformations )

In [56]:
from gp_emulator import MultivariateEmulator
angles = [ [15, 15, 0] ]
#emulator,  samples, validate = create_emulators ( state, [""], angles=angles )   
#for i,(s,v,r) in enumerate(angles):     
#    fname = "%02d_sza_%02d_vza_000_raa" % (s,v)
#    emulator[i].dump_emulator(fname)
#emulators = {}
#emulators[(s,v)] = emulator[0]
emulators = {}
for i,(s,v,r) in enumerate(angles):     
    fname = "%02d_sza_%02d_vza_000_raa.npz" % (s,v)
    emulators[(v,s)]= MultivariateEmulator ( dump=fname )


Decomposing the input dataset into basis functions... Done!
 ====> Using 8 basis functions

In [57]:
b_min = np.array([433.0, 457.5, 542.5, 650.0, 697.5, 732.5, 773.0, 784.5, 855.0, 935.0, 1565.0, 2100.0])
b_max = np.array([453.0, 522.5, 577.5, 680.0, 712.5, 747.5, 793.0, 899.5, 875.0, 955.0, 1655.0, 2280.0])
from create_emulators import *
def cab_traj ( t ):
    out = t*0.
    w = np.where( t <= 0.5 )[0]
    out[w] = 10.5 + 70*t[w]
    w = np.where(t > 0.5)[0]
    out[w] = 80.5 - 70.*t[w]
    return out


trajectories = {
    'lai': lambda t: (0.21 + 3.51 * (np.sin(np.pi*t)**5)), 
    'cab': cab_traj}
#    'cw': lambda t: (0.068/5 + 0.01*np.sin(np.pi * t+0.1) *  \
#                 np.sin(6*np.pi*t + 0.1) ),
#    'bsoil': lambda t: (2.5*(0.2 + 0.18*np.sin(np.pi*t) * \
#                  np.sin(6*np.pi*t)) )
#}
    
# Now, create some simulated data...
parameter_grid = create_parameter_trajectories ( state, trajectories )
plt.plot ( np.arange(1, 366), parameter_grid[6, :], label="LAI" )
plt.xlabel( "DoY" )
plt.ylabel ("LAI [$m^{2}m^{-2}$]")
# Now forward model the observations...
doys, vza, sza, raa, rho = create_observations ( state, parameter_grid, \
            42, -8., b_min=b_min, b_max=b_max)



In [58]:
[plt.plot ( doys, rho[i,:]) for i in xrange(12)]


Out[58]:
[[<matplotlib.lines.Line2D at 0x2b1e60c046d0>],
 [<matplotlib.lines.Line2D at 0x2b1e60c04950>],
 [<matplotlib.lines.Line2D at 0x2b1e60c0b050>],
 [<matplotlib.lines.Line2D at 0x2b1e60c0b690>],
 [<matplotlib.lines.Line2D at 0x2b1e60c0bcd0>],
 [<matplotlib.lines.Line2D at 0x2b1e60c24790>],
 [<matplotlib.lines.Line2D at 0x2b1e60c24c10>],
 [<matplotlib.lines.Line2D at 0x2b1e60c24590>],
 [<matplotlib.lines.Line2D at 0x2b1e60c2b650>],
 [<matplotlib.lines.Line2D at 0x2b1e60c2bc90>],
 [<matplotlib.lines.Line2D at 0x2b1e60c2e310>],
 [<matplotlib.lines.Line2D at 0x2b1e60c2e950>]]

In [59]:
mu_prior = OrderedDict ()
prior_inv_cov = OrderedDict ()

for param in state.parameter_min.iterkeys():
    mu_prior[param] = np.array([default_par[param]])

prior_inv_cov['n'] = 0.5
prior_inv_cov['cab'] = 60.
prior_inv_cov['car'] = 20.
prior_inv_cov['cbrown'] = 1.
prior_inv_cov['cw'] = 0.1
prior_inv_cov['dm'] = 0.1
prior_inv_cov['lai'] = 5.
prior_inv_cov['ala'] = 90.
prior_inv_cov['bsoil'] = 3
prior_inv_cov['bsoil'] = 2.
for k in prior_inv_cov.iterkeys():
    prior_inv_cov[k]  = np.array([1./( prior_inv_cov[k]**2 )])
    
prior = Prior ( mu_prior, prior_inv_cov )

In [60]:
temporal = TemporalSmoother ( state_grid, 5500, required_params=["cab"] )

In [61]:
rho_big = np.zeros(( 12,365))
mask = np.zeros(( 365, 4))
band_pass = np.zeros((12,2101), dtype=np.bool)
n_bands = b_min.shape[0]
bw = np.zeros( n_bands )
bh = np.zeros( n_bands )
wv = np.arange ( 400, 2501 )
for i in xrange( n_bands ):
    band_pass[i,:] = np.logical_and ( wv >= b_min[i], \
                wv <= b_max[i] )
    bw[i] = b_max[i] - b_min[i]
    bh[i] = ( b_max[i] + b_min[i] )/2.

for i in state_grid:
    if i in doys:
        rho_big[:, i] = rho[:, doys==i].squeeze()
        mask[ i, :] = [ 1, vza[doys==i], sza[doys==i],  raa[doys==i] ]

bu = np.array( [0.004, 0.00416142, 0.00440183, 0.00476245, 0.00489983, 0.00502003, 0.00516772, 0.00537035, \
                0.00544934, 0.0057241, 0.00800801, 0.01] )   
obs = ObservationOperatorTimeSeriesGP( state_grid, state, rho_big, mask, emulators, bu, band_pass, bw )

In [62]:
x_dict = {}
for i,k in enumerate(state.parameter_max.keys()):
    if state.state_config[k] == VARIABLE:
        x_dict[k] =  ( parameter_grid[i, :] )*0 + np.random.rand(365)*mu_prior[k]
    else:
        x_dict[k] = parameter_grid[i, 0]

In [63]:
state.add_operator ( "Prior", prior )
state.add_operator ( "Model", temporal )
state.add_operator ( "Obs", obs )

In [64]:
retval = state.optimize ( x_dict )


	Prior 34.388291
	Model 253953790.135043
	Obs 151018.880161
	Prior 98.440074
	Model 4306701988.632087
	Obs 283520.610381
	Prior 34.313814
	Model 251210064.657731
	Obs 150329.148138
	Prior 27.716354
	Model 542402053.070929
	Obs 49369.855305
	Prior 34.063198
	Model 242039518.007158
	Obs 148011.019357
	Prior 34.062468
	Model 242012953.446160
	Obs 148004.274535
	Prior 25.641685
	Model 67123854.101267
	Obs 65708.562152
	Prior 24.346738
	Model 16396811.353727
	Obs 2365.883318
	Prior 24.318678
	Model 9584941.755332
	Obs 1193.492620
	Prior 23.965484
	Model 6834313.108830
	Obs 1141.998172
	Prior 23.403001
	Model 5389150.810424
	Obs 951.241437
	Prior 22.814278
	Model 4878414.636236
	Obs 863.691079
	Prior 22.436716
	Model 4518867.028823
	Obs 777.896820
	Prior 22.015272
	Model 4238629.088858
	Obs 716.853037
	Prior 21.388278
	Model 3958598.851796
	Obs 655.527832
	Prior 20.581198
	Model 4075275.502109
	Obs 561.562138
	Prior 21.375675
	Model 3953012.369933
	Obs 653.408569
	Prior 21.375631
	Model 3952993.077837
	Obs 653.401177
	Prior 20.933823
	Model 3875231.990581
	Obs 590.408801
	Prior 20.477374
	Model 3717400.908197
	Obs 547.761128
	Prior 20.078893
	Model 3653242.105959
	Obs 521.425882
	Prior 19.871682
	Model 3547468.502300
	Obs 515.432234
	Prior 19.835581
	Model 3456407.204033
	Obs 515.242346
	Prior 19.748019
	Model 3355763.303753
	Obs 515.742748
	Prior 19.647366
	Model 3287339.598323
	Obs 521.340586
	Prior 19.570894
	Model 3209689.710215
	Obs 526.525324
	Prior 19.552688
	Model 3153756.321974
	Obs 527.501634
	Prior 19.548551
	Model 3108302.519369
	Obs 528.588526
	Prior 19.566622
	Model 3075494.662234
	Obs 527.004016
	Prior 19.602937
	Model 3058228.188128
	Obs 527.159792
	Prior 19.622994
	Model 3036346.180748
	Obs 528.609773
	Prior 19.650278
	Model 3021213.869491
	Obs 527.669951
	Prior 19.700302
	Model 3009817.520463
	Obs 526.765928
	Prior 19.778643
	Model 3001868.713711
	Obs 522.989051
	Prior 19.800045
	Model 2993156.871528
	Obs 522.731571
	Prior 19.839704
	Model 2986167.994181
	Obs 522.499726
	Prior 19.900622
	Model 2982068.805796
	Obs 521.209655
	Prior 20.030140
	Model 2983031.983360
	Obs 522.240969
	Prior 19.903676
	Model 2981744.032173
	Obs 521.222599
	Prior 19.903682
	Model 2981743.458148
	Obs 521.222623
	Prior 19.965687
	Model 2978922.396102
	Obs 521.608996
	Prior 20.032521
	Model 2976631.460448
	Obs 520.346127
	Prior 20.096541
	Model 2974566.064961
	Obs 520.142418
	Prior 20.201609
	Model 2972102.653695
	Obs 518.558242
	Prior 20.270727
	Model 2969826.034588
	Obs 517.753245
	Prior 20.358387
	Model 2967891.207870
	Obs 517.480146
	Prior 20.457041
	Model 2967067.709157
	Obs 516.320862
	Prior 20.608786
	Model 2966659.876957
	Obs 515.244996
	Prior 20.759657
	Model 2966056.156105
	Obs 514.916767
	Prior 20.841424
	Model 2964914.249978
	Obs 514.175081
	Prior 20.972898
	Model 2963676.243198
	Obs 512.801716
	Prior 21.172752
	Model 2963453.476666
	Obs 511.281883
	Prior 21.349479
	Model 2962909.927865
	Obs 509.141937
	Prior 21.478560
	Model 2962258.778576
	Obs 507.703803
	Prior 21.583386
	Model 2962147.237019
	Obs 506.830370
	Prior 21.751338
	Model 2962436.943191
	Obs 505.502782
	Prior 21.587033
	Model 2962105.711996
	Obs 506.799212
	Prior 21.587046
	Model 2962105.568117
	Obs 506.799101
	Prior 21.668908
	Model 2961736.405310
	Obs 506.126942
	Prior 21.896860
	Model 2962324.049658
	Obs 504.726856
	Prior 21.671776
	Model 2961718.290792
	Obs 506.107599
	Prior 21.671792
	Model 2961718.192229
	Obs 506.107492
	Prior 21.783856
	Model 2961524.303205
	Obs 505.385856
	Prior 22.098184
	Model 2963807.678592
	Obs 504.227176
	Prior 21.785256
	Model 2961515.723509
	Obs 505.379414
	Prior 21.785264
	Model 2961515.676027
	Obs 505.379378
	Prior 21.940813
	Model 2961621.154741
	Obs 504.734612
	Prior 21.791673
	Model 2961478.618914
	Obs 505.350048
	Prior 21.791710
	Model 2961478.415234
	Obs 505.349880
	Prior 21.866052
	Model 2961310.471365
	Obs 505.026973
	Prior 22.214019
	Model 2963065.888730
	Obs 502.839459
	Prior 21.868225
	Model 2961299.025030
	Obs 505.011211
	Prior 21.868239
	Model 2961298.952640
	Obs 505.011110
	Prior 22.039995
	Model 2961299.075445
	Obs 503.847986
	Prior 22.322294
	Model 2964755.392917
	Obs 501.912628
	Prior 22.040655
	Model 2961297.790631
	Obs 503.842781
	Prior 22.040666
	Model 2961297.770136
	Obs 503.842697
	Prior 22.180712
	Model 2962030.114130
	Obs 502.810403
	Prior 22.041428
	Model 2961296.344316
	Obs 503.836694
	Prior 22.041441
	Model 2961296.320786
	Obs 503.836593
	Prior 22.110886
	Model 2961416.523331
	Obs 503.307328
	Prior 22.042532
	Model 2961294.386257
	Obs 503.828011
	Prior 22.042551
	Model 2961294.353028
	Obs 503.827859
	Prior 22.076672
	Model 2961295.684729
	Obs 503.563732
	Prior 22.359948
	Model 2962673.305637
	Obs 501.761010
	Prior 22.078313
	Model 2961291.157997
	Obs 503.552023
	Prior 22.078331
	Model 2961291.108430
	Obs 503.551893
	Prior 22.218353
	Model 2961448.836481
	Obs 502.606416
	Prior 22.081589
	Model 2961282.563617
	Obs 503.528679
	Prior 22.081627
	Model 2961282.467792
	Obs 503.528410
	Prior 22.149802
	Model 2961238.185591
	Obs 503.055909
	Prior 22.536133
	Model 2967507.469675
	Obs 500.026084
	Prior 22.150471
	Model 2961237.362886
	Obs 503.049841
	Prior 22.150488
	Model 2961237.341742
	Obs 503.049681
	Prior 22.341905
	Model 2962693.956472
	Obs 501.428425
	Prior 22.151196
	Model 2961236.517185
	Obs 503.043257
	Prior 22.151216
	Model 2961236.494795
	Obs 503.043078
	Prior 22.246210
	Model 2961547.744245
	Obs 502.209689
	Prior 22.152017
	Model 2961235.619472
	Obs 503.035811
	Prior 22.152041
	Model 2961235.594181
	Obs 503.035593
	Prior 22.199039
	Model 2961288.978305
	Obs 502.616364
	Prior 22.153108
	Model 2961234.524075
	Obs 503.025922
	Prior 22.153143
	Model 2961234.490733
	Obs 503.025604
	Prior 22.176070
	Model 2961237.238115
	Obs 502.819502
	Prior 22.555972
	Model 2963568.565014
	Obs 499.881910
	Prior 22.177835
	Model 2961233.144237
	Obs 502.804073
	Prior 22.177859
	Model 2961233.089626
	Obs 502.803864
	Prior 22.365540
	Model 2961606.774963
	Obs 501.256476
	Prior 22.180464
	Model 2961227.312033
	Obs 502.781117
	Prior 22.180501
	Model 2961227.232583
	Obs 502.780795
	Prior 22.272685
	Model 2961223.362284
	Obs 501.998722
	Prior 22.644878
	Model 2969741.574346
	Obs 500.980315
	Prior 22.273163
	Model 2961222.491538
	Obs 501.996770
	Prior 22.273172
	Model 2961222.476048
	Obs 501.996734
	Prior 22.457539
	Model 2963192.742304
	Obs 501.366568
	Prior 22.273682
	Model 2961221.582176
	Obs 501.994652
	Prior 22.273692
	Model 2961221.565684
	Obs 501.994613
	Prior 22.365245
	Model 2961636.669392
	Obs 501.651383
	Prior 22.274282
	Model 2961220.578037
	Obs 501.992208
	Prior 22.274294
	Model 2961220.559061
	Obs 501.992161
	Prior 22.319677
	Model 2961287.694019
	Obs 501.814693
	Prior 22.275139
	Model 2961219.229404
	Obs 501.988722
	Prior 22.275156
	Model 2961219.202590
	Obs 501.988650
	Prior 22.297395
	Model 2961219.526830
	Obs 501.899983
	Prior 22.629764
	Model 2963718.811120
	Obs 499.495518
	Prior 22.298626
	Model 2961218.712558
	Obs 501.889943
	Prior 22.298694
	Model 2961218.669830
	Obs 501.889389
	Prior 22.463071
	Model 2961794.073036
	Obs 500.623889
	Prior 22.299990
	Model 2961217.901225
	Obs 501.878836
	Prior 22.300072
	Model 2961217.855536
	Obs 501.878170
	Prior 22.381286
	Model 2961339.593901
	Obs 501.234947
	Prior 22.301501
	Model 2961217.112941
	Obs 501.866539
	Prior 22.301608
	Model 2961217.061458
	Obs 501.865667
	Prior 22.341378
	Model 2961238.235181
	Obs 501.546523
	Prior 22.303325
	Model 2961216.316681
	Obs 501.851714
	Prior 22.303490
	Model 2961216.253035
	Obs 501.850375
	Prior 22.322419
	Model 2961218.141501
	Obs 501.697600
	Prior 22.305850
	Model 2961215.494134
	Obs 501.831220
	Prior 22.306213
	Model 2961215.402574
	Obs 501.828276
	Prior 22.314313
	Model 2961215.103905
	Obs 501.762783
	Prior 22.319662
	Model 2961216.734457
	Obs 501.719727
	Prior 22.314653
	Model 2961215.164234
	Obs 501.760045
	Prior 22.314313
	Model 2961215.103905
	Obs 501.762783
	Prior 22.790910
	Model 2968499.632860
	Obs 497.553174
	Prior 22.315181
	Model 2961213.418969
	Obs 501.753682
	Prior 22.315195
	Model 2961213.392496
	Obs 501.753536
	Prior 22.550814
	Model 2962817.365435
	Obs 499.475126
	Prior 22.316164
	Model 2961211.580757
	Obs 501.743387
	Prior 22.316180
	Model 2961211.551353
	Obs 501.743219
	Prior 22.432939
	Model 2961507.156854
	Obs 500.567089
	Prior 22.317440
	Model 2961209.302526
	Obs 501.730029
	Prior 22.317462
	Model 2961209.264649
	Obs 501.729801
	Prior 22.375063
	Model 2961233.946581
	Obs 501.138391
	Prior 22.320459
	Model 2961204.401366
	Obs 501.698463
	Prior 22.320516
	Model 2961204.315835
	Obs 501.697870
	Prior 22.347759
	Model 2961191.255950
	Obs 501.415901
	Prior 22.815168
	Model 2964763.338512
	Obs 498.185126
	Prior 22.349494
	Model 2961189.258655
	Obs 501.401717
	Prior 22.349545
	Model 2961189.201731
	Obs 501.401300
	Prior 22.580101
	Model 2961958.644912
	Obs 499.659146
	Prior 22.351491
	Model 2961187.106600
	Obs 501.385407
	Prior 22.351553
	Model 2961187.042879
	Obs 501.384905
	Prior 22.465270
	Model 2961321.738753
	Obs 500.491121
	Prior 22.354094
	Model 2961184.538696
	Obs 501.364185
	Prior 22.354182
	Model 2961184.456314
	Obs 501.363466
	Prior 22.409593
	Model 2961193.068208
	Obs 500.920141
	Prior 22.359878
	Model 2961179.788232
	Obs 501.317144
	Prior 22.360120
	Model 2961179.618113
	Obs 501.315179
	Prior 22.384830
	Model 2961174.374184
	Obs 501.116254
	Prior 22.394089
	Model 2961178.567379
	Obs 501.042544
	Prior 22.894315
	Model 2969332.809262
	Obs 497.632449
	Prior 22.394926
	Model 2961177.271952
	Obs 501.035315
	Prior 22.394942
	Model 2961177.246502
	Obs 501.035170
	Prior 22.642014
	Model 2963036.842196
	Obs 499.122000
	Prior 22.395845
	Model 2961175.908969
	Obs 501.027376
	Prior 22.395864
	Model 2961175.881593
	Obs 501.027213
	Prior 22.518286
	Model 2961553.774725
	Obs 500.024531
	Prior 22.396936
	Model 2961174.373065
	Obs 501.017959
	Prior 22.396960
	Model 2961174.340729
	Obs 501.017755
	Prior 22.457462
	Model 2961228.113695
	Obs 500.509128
	Prior 22.398641
	Model 2961172.151995
	Obs 501.003263
	Prior 22.398681
	Model 2961172.102353
	Obs 501.002918
	Prior 22.428034
	Model 2961168.001842
	Obs 500.753219
	Prior 22.913361
	Model 2965210.125658
	Obs 497.231029
	Prior 22.429598
	Model 2961167.731436
	Obs 500.739758
	Prior 22.431386
	Model 2961167.532986
	Obs 500.724392
	Prior 22.669892
	Model 2962172.379134
	Obs 498.831443
	Prior 22.432902
	Model 2961167.457061
	Obs 500.711377
	Prior 22.588763
	Model 2961604.535081
	Obs 499.440021
	Prior 22.434372
	Model 2961167.464333
	Obs 500.698762
	Prior 22.536033
	Model 2961359.094965
	Obs 499.855215
	Prior 22.435770
	Model 2961167.545114
	Obs 500.686781
	Prior 22.434583
	Model 2961167.471915
	Obs 500.696953
	Prior 22.434372
	Model 2961167.464333
	Obs 500.698762
	Prior 23.005192
	Model 2971540.866720
	Obs 497.803108
	Prior 22.435210
	Model 2961166.812613
	Obs 500.693094
	Prior 22.435247
	Model 2961166.785389
	Obs 500.692848
	Prior 22.716812
	Model 2963664.440728
	Obs 499.021406
	Prior 22.436105
	Model 2961166.171426
	Obs 500.687049
	Prior 22.436146
	Model 2961166.143292
	Obs 500.686771
	Prior 22.575626
	Model 2961744.393247
	Obs 499.801200
	Prior 22.437049
	Model 2961165.555894
	Obs 500.680677
	Prior 22.437097
	Model 2961165.525968
	Obs 500.680350
	Prior 22.506151
	Model 2961289.168939
	Obs 500.228118
	Prior 22.438094
	Model 2961164.946768
	Obs 500.673621
	Prior 22.438156
	Model 2961164.913254
	Obs 500.673205
	Prior 22.472102
	Model 2961186.815529
	Obs 500.447638
	Prior 22.439371
	Model 2961164.307270
	Obs 500.665018
	Prior 22.439462
	Model 2961164.265866
	Obs 500.664402
	Prior 22.455770
	Model 2961166.239583
	Obs 500.555326
	Prior 22.441282
	Model 2961163.563342
	Obs 500.652154
	Prior 22.441479
	Model 2961163.501390
	Obs 500.650833
	Prior 22.448622
	Model 2961163.084554
	Obs 500.602947
	Prior 22.453340
	Model 2961164.766160
	Obs 500.571487
	Prior 96.556446
	Model 1834638453.174765
	Obs 543246.565062
	Prior 22.434361
	Model 2961167.117577
	Obs 500.698715
	Prior 33.468459
	Model 442124937.870459
	Obs 125869.641201
	Prior 22.434350
	Model 2961166.761175
	Obs 500.698667
	Prior 22.434349
	Model 2961166.759449
	Obs 500.698667
	Prior 23.743011
	Model 112994513.409347
	Obs 29676.070993
	Prior 22.434338
	Model 2961166.409513
	Obs 500.698620
	Prior 22.434338
	Model 2961166.407810
	Obs 500.698620
	Prior 22.056699
	Model 30637771.289138
	Obs 7505.807003
	Prior 22.434326
	Model 2961166.065500
	Obs 500.698574
	Prior 22.434326
	Model 2961166.063827
	Obs 500.698574
	Prior 21.979840
	Model 9903166.635646
	Obs 2215.104634
	Prior 22.434315
	Model 2961165.727969
	Obs 500.698530
	Prior 22.434315
	Model 2961165.726320
	Obs 500.698530
	Prior 22.138480
	Model 4696111.071749
	Obs 924.235322
	Prior 22.434304
	Model 2961165.395577
	Obs 500.698486
	Prior 22.434304
	Model 2961165.393945
	Obs 500.698486
	Prior 22.268838
	Model 3392865.003326
	Obs 605.696170
	Prior 22.434293
	Model 2961165.066836
	Obs 500.698444
	Prior 22.434293
	Model 2961165.065215
	Obs 500.698444
(array([ 0.7415589 ,  0.98745986,  0.97492963,  0.96235328,  0.94986593,
        0.93752974,  0.9253465 ,  0.91328095,  0.91149261,  0.9094416 ,
        0.90716701,  0.90468708,  0.90208008,  0.89942214,  0.89669186,
        0.89379071,  0.89082345,  0.88776697,  0.88463263,  0.88143172,
        0.8780561 ,  0.87449732,  0.87259034,  0.87048833,  0.86841286,
        0.86632545,  0.86426664,  0.86225527,  0.86025765,  0.85739794,
        0.85448335,  0.85143074,  0.84808899,  0.8445164 ,  0.84074441,
        0.83698852,  0.8332875 ,  0.82979316,  0.82662239,  0.82371808,
        0.82118963,  0.81906294,  0.81738581,  0.8161769 ,  0.81531589,
        0.81478796,  0.81447318,  0.8143183 ,  0.81431863,  0.81439764,
        0.81488281,  0.8153756 ,  0.81590655,  0.81643738,  0.81700986,
        0.81770487,  0.81842193,  0.8172906 ,  0.8161012 ,  0.81489356,
        0.81378748,  0.81287585,  0.81217827,  0.81159376,  0.81099351,
        0.81029242,  0.80947167,  0.80863195,  0.80780158,  0.80703344,
        0.80634915,  0.80562048,  0.80493377,  0.8042554 ,  0.80355624,
        0.80283083,  0.80205628,  0.80117685,  0.79984138,  0.79837306,
        0.79680872,  0.79522572,  0.79367287,  0.79223427,  0.79087522,
        0.78851484,  0.78612028,  0.78369269,  0.78126978,  0.77890897,
        0.77663954,  0.77450778,  0.77257183,  0.77086686,  0.76941311,
        0.76807419,  0.76672036,  0.76527293,  0.7637065 ,  0.76300272,
        0.76226589,  0.76148388,  0.76061583,  0.75961358,  0.75857599,
        0.7575143 ,  0.75656668,  0.75563591,  0.7547719 ,  0.75373692,
        0.75273498,  0.7515427 ,  0.7506015 ,  0.74733278,  0.74440488,
        0.7413739 ,  0.73849558,  0.73557101,  0.73267426,  0.72976157,
        0.72689278,  0.72401136,  0.72095739,  0.71790419,  0.71484921,
        0.71178218,  0.70873206,  0.70738033,  0.70589792,  0.70420138,
        0.70228718,  0.70027358,  0.69820297,  0.69616362,  0.69229103,
        0.68846917,  0.68470252,  0.68093611,  0.67722387,  0.67346142,
        0.66973023,  0.66900214,  0.66833232,  0.6675804 ,  0.66699916,
        0.66635467,  0.66581673,  0.66530505,  0.6642225 ,  0.66315386,
        0.66203451,  0.66079389,  0.65950392,  0.65798087,  0.65657088,
        0.65656768,  0.656589  ,  0.65629941,  0.65586382,  0.65516954,
        0.65452756,  0.65371669,  0.65308842,  0.65226023,  0.65140603,
        0.65031228,  0.64906168,  0.64782238,  0.64637621,  0.64578752,
        0.64493175,  0.64445157,  0.64370929,  0.64318017,  0.64238014,
        0.64185394,  0.64041544,  0.6392261 ,  0.63808249,  0.63691455,
        0.63597969,  0.63483568,  0.63417769,  0.63487051,  0.63622939,
        0.63749898,  0.63929527,  0.64089832,  0.64296607,  0.64474655,
        0.64589624,  0.64677815,  0.64819888,  0.6494051 ,  0.65071323,
        0.65184977,  0.65298475,  0.65398293,  0.65490528,  0.65571843,
        0.65618799,  0.65656367,  0.65674184,  0.65701218,  0.65697904,
        0.65713576,  0.65737267,  0.65764353,  0.6580639 ,  0.65858044,
        0.65960766,  0.66089793,  0.6626793 ,  0.66449226,  0.66647539,
        0.66823917,  0.67021987,  0.67204269,  0.67299894,  0.67378506,
        0.67438846,  0.67476351,  0.67488765,  0.67506072,  0.67538831,
        0.67655883,  0.67795205,  0.67959838,  0.68125539,  0.6831899 ,
        0.68511738,  0.6873032 ,  0.68946574,  0.69160397,  0.69359644,
        0.6953598 ,  0.69714996,  0.69881127,  0.70073499,  0.70184392,
        0.70311254,  0.70430118,  0.70545146,  0.70648528,  0.70741911,
        0.70828235,  0.71040072,  0.71257066,  0.71470045,  0.71693794,
        0.71918548,  0.72157874,  0.72404495,  0.72674138,  0.72950992,
        0.73235827,  0.73527075,  0.73812995,  0.74110161,  0.74405541,
        0.74621806,  0.74840499,  0.75077081,  0.75318434,  0.75571371,
        0.75815797,  0.76052805,  0.76174984,  0.76281491,  0.76380254,
        0.76476717,  0.76573392,  0.76675466,  0.76778402,  0.76886977,
        0.77003725,  0.77123346,  0.77248434,  0.77375398,  0.77509861,
        0.77656219,  0.7795438 ,  0.78255695,  0.78552135,  0.78831904,
        0.79091071,  0.79330805,  0.79550503,  0.7970764 ,  0.79850317,
        0.79985181,  0.80124712,  0.80280335,  0.80456423,  0.80651503,
        0.8071723 ,  0.80799735,  0.80902626,  0.81018222,  0.81136087,
        0.81236873,  0.81321091,  0.81517979,  0.81705183,  0.81901808,
        0.82099095,  0.82306117,  0.82525796,  0.82754174,  0.82932486,
        0.83127046,  0.83334789,  0.83558963,  0.83792639,  0.84040573,
        0.84300344,  0.8422728 ,  0.84165085,  0.84118245,  0.84086707,
        0.84066168,  0.84068575,  0.84093747,  0.84145629,  0.84222017,
        0.84317456,  0.84423774,  0.84531275,  0.84650579,  0.84770234,
        0.84948982,  0.8512758 ,  0.853091  ,  0.85498807,  0.85699626,
        0.85925678,  0.86152812,  0.85931456,  0.85696647,  0.85456204,
        0.85233995,  0.8503253 ,  0.84870435,  0.84731106,  0.84253246,
        0.83787272,  0.83341058,  0.82914399,  0.82505911,  0.82110393,
        0.81727021,  0.81017192,  0.80336086,  0.79686925,  0.79067276,
        0.78471129,  0.77886507,  0.77312774,  0.7657883 ,  0.75864957,
        0.75181279,  0.74509252,  0.73844422,  0.73178698,  0.72508762,
        0.75406081,  0.90334453,  0.38670269,  0.71499412,  0.69411203,
        0.70739626,  0.38680238,  0.90363947,  0.79970995,  0.69040801,
        0.66740986,  0.92406059,  0.66440166,  0.45497728,  0.85864326,
        0.54340151,  0.36927059,  0.50169673,  0.53425572,  0.95084218,
        0.72944065,  0.89962247,  0.4579546 ,  0.72203748,  0.84470879,
        0.73577899,  0.6282411 ,  0.50985675,  0.89335037,  0.69376138,
        0.71214584,  0.89759366,  0.51162436,  0.92412681,  0.69958855,
        0.89306145,  0.52307662,  0.57008363,  0.52729289,  0.39016684,
        0.80948787,  0.40002207,  0.96469116,  0.58390077,  0.78472908,
        0.46378416,  0.38391526,  0.4437144 ,  0.38203114,  0.883869  ,
        0.94260777,  0.68613196,  0.49657395,  0.91686352,  0.76726042,
        0.61402577,  0.86477099,  0.64215071,  0.66873724,  0.38360955,
        0.85545872,  0.45887248,  0.87579577,  0.45477164,  0.52323932,
        0.4318696 ,  0.46739273,  0.76360854,  0.52164856,  0.48801514,
        0.82226006,  0.53120402,  0.84194248,  0.56110039,  0.75886889,
        0.63809138,  0.52879363,  0.77978057,  0.6280702 ,  0.47555642,
        0.41319002,  0.39040691,  0.8206391 ,  0.95956876,  0.72708634,
        0.65888579,  0.54274562,  0.37189868,  0.88504118,  0.50857388,
        0.65245408,  0.71836013,  0.88267509,  0.73556387,  0.77297716,
        0.39721361,  0.39738219,  0.73180137,  0.60832045,  0.58546676,
        0.76375227,  0.39421887,  0.65910755,  0.46569673,  0.84474626,
        0.53823909,  0.43988399,  0.89521797,  0.87963821,  0.59112151,
        0.89051391,  0.88339582,  0.47636746,  0.87306335,  0.66217432,
        0.66550783,  0.41328565,  0.47561641,  0.91891436,  0.42257331,
        0.60827392,  0.37427859,  0.47950326,  0.5176816 ,  0.42118657,
        0.82355519,  0.36223097,  0.68861396,  0.57140376,  0.64499886,
        0.6387247 ,  0.39357383,  0.40663345,  0.30972628,  0.44327934,
        0.57386047,  0.43670705,  0.8455927 ,  0.76280697,  0.61248675,
        0.26955965,  0.42443492,  0.62540781,  0.73314459,  0.37455121,
        0.50972059,  0.40380238,  0.23570943,  0.39792981,  0.64028914,
        0.96191377,  0.40295827,  0.39261282,  0.38003654,  0.19798304,
        0.47168722,  0.91393503,  0.60262324,  0.58325888,  0.46475904,
        0.72155303,  0.78343079,  0.59770746,  0.73502401,  0.9192164 ,
        0.63147389,  0.42879468,  0.84008501,  0.16093176,  0.38004182,
        0.87790993,  0.46593814,  0.431054  ,  0.68712231,  0.97002702,
        0.14820539,  0.41864207,  0.5894861 ,  0.86705159,  0.37739375,
        0.53670967,  0.60784179,  0.14250192,  0.61507823,  0.5045035 ,
        0.54988512,  0.40098596,  0.94470739,  0.77081598,  0.15928689,
        0.7196224 ,  0.72990024,  0.54371153,  0.8868193 ,  0.62572015,
        0.9120143 ,  0.70796572,  0.78588202,  0.37923822,  0.3678839 ,
        0.62040118,  0.64832644,  0.390393  ,  0.18282304,  0.70240393,
        0.71907117,  0.55619132,  0.44396249,  0.50774123,  0.80980453,
        0.72836759,  0.64338605,  0.54670651,  0.42011533,  0.5752207 ,
        0.65966014,  0.55819474,  0.22496575,  0.73256294,  0.70959285,
        0.46918469,  0.45618834,  0.40411989,  0.40015515,  0.25232024,
        0.67382597,  0.38058804,  0.67926596,  0.61952713,  0.53742073,
        0.57631789,  0.42660085,  0.40621683,  0.81127829,  0.88488475,
        0.63467901,  0.74324742,  0.67495492,  0.35139222,  0.63299168,
        0.74483107,  0.37269363,  0.55864972,  0.59831788,  0.45194397,
        0.39409491,  0.42048224,  0.56503609,  0.52600342,  0.38596024,
        0.46403683,  0.62591452,  0.75185161,  0.83305073,  0.50861161,
        0.37076471,  0.71592475,  0.47412462,  0.6591171 ,  0.52280938,
        0.4962181 ,  0.73345885,  0.44406978,  0.40677904,  0.50279945,
        0.41353601,  0.58829349,  0.90113961,  0.43448983,  0.51663617,
        0.60131264,  0.90293194,  0.70225333,  0.53733176,  0.39674718,
        0.76562581,  0.72899112,  0.81928224,  0.49206713,  0.69643654,
        0.71476339,  0.95209083,  0.43297294,  0.6026251 ,  0.42495874,
        0.37230014,  0.7695788 ,  0.76528172,  0.60098992,  0.89846448,
        0.48347133,  0.87647945,  0.72347436,  0.84775222,  0.81439926,
        0.41165465,  0.6048449 ,  0.68060469,  0.89245565,  0.70934778,
        0.40385447,  0.83205699,  0.84268509,  0.42574724,  0.80847585,
        0.39427286,  0.61700705,  0.48927621,  0.87209006,  0.69965683,
        0.88515267,  0.38325658,  0.64293346,  0.80114218,  0.72002057,
        0.87680645,  0.47134859,  0.3692398 ,  0.52090908,  0.69232072,
        0.51924374,  0.47958243,  0.61746682,  0.57414075,  0.42620687,
        0.41151535,  0.49748118,  0.62952254,  0.70813516,  0.88980277,
        0.4875311 ,  0.44563119,  0.55839151,  0.50284613,  0.6123374 ,
        0.90051634,  0.90500051,  0.45543436,  0.73157013,  0.43744008,
        0.53290571,  0.45329161,  0.85493816,  0.90113298,  0.50417288,
        0.46154052,  0.51073177,  0.88308788,  0.7456463 ,  0.49870642,
        0.90114781,  0.44176047,  0.63817711,  0.7817426 ,  0.83758293,
        0.90630708,  0.70328536,  0.89327193,  0.92676413,  0.86131594,
        0.62263193,  0.57926808,  0.49635115,  0.64254387,  0.63010219]), matrix([[ 2961690.5974675]]), {'warnflag': 2, 'task': 'ABNORMAL_TERMINATION_IN_LNSRCH', 'grad': array([  2.80553654e-03,   8.31337776e+01,   1.17224276e+02,
         4.24083517e+01,   6.39541395e+00,   4.32065235e+00,
         2.44817125e+01,   8.23390801e+01,   1.60962968e+02,
         1.38336233e+02,   1.28285983e+02,   8.16155143e+01,
         3.57516880e+01,   4.91733262e+01,   1.10248261e+02,
         4.66167254e+01,   6.13840749e+01,   5.49329808e+01,
         4.84471313e+01,   1.16685862e+02,   1.23319273e+02,
         1.78510139e+02,   1.25850244e+02,  -1.35929914e+01,
         1.07275961e+01,  -1.50008039e+01,  -2.71381213e+01,
        -5.78356036e+00,   8.81592307e+01,   4.14538968e+01,
         9.55565375e+01,   1.94553145e+02,   1.58864893e+02,
         1.40274369e+02,   5.02547778e-01,  -6.34511474e+01,
        -1.26154157e+02,  -2.05570890e+02,  -1.69847400e+02,
        -2.44950902e+02,  -2.64628204e+02,  -2.98871675e+02,
        -3.13287915e+02,  -2.33525727e+02,  -2.24261519e+02,
        -1.43721379e+02,  -1.07915847e+02,  -1.04820190e+02,
        -5.31348586e+01,  -7.48884395e+01,  -4.93900301e+00,
        -2.55128732e+01,   3.12522018e-01,  -2.77969968e+01,
        -8.21497428e+01,  -1.44165871e+01,  -2.21935462e+01,
         4.01920596e+01,   1.34876393e+01,  -6.74343234e+01,
        -1.30560799e+02,  -1.44276424e+02,  -7.62158915e+01,
         1.09604483e+01,   6.87568082e+01,   8.17051802e+01,
         1.34785758e+01,  -5.76857297e+00,  -4.18258012e+01,
        -5.66894929e+01,  -3.47109612e+00,  -2.82179461e+01,
        -5.29773845e+00,   1.46280865e+01,   1.84018243e+01,
         3.41505061e+01,   7.25130547e+01,   5.16468519e+01,
         9.30545205e+01,   6.81305208e+01,   1.50360365e+01,
        -1.87078733e+01,  -7.72157405e+01,  -5.35062443e+01,
        -3.70052272e+00,   2.88419771e+01,   2.82943467e+01,
         1.98152996e+00,  -3.85588531e+01,  -5.96559402e+01,
        -9.30745248e+01,  -1.35244564e+02,  -1.61367970e+02,
        -1.76916739e+02,  -8.02630134e+01,   1.23667719e+01,
         6.89926058e+01,   8.76607520e+01,   4.69941769e+01,
         2.43247999e+01,   3.31483462e+01,   6.27891667e+01,
         9.78888256e+01,   2.65747910e+01,   1.85324363e+01,
        -8.18432766e+01,  -1.14016709e+01,  -4.78102512e+01,
         1.25460974e+02,  -2.30960542e+01,   1.40254753e+02,
        -1.82624044e+02,   1.27657659e+02,  -2.41350615e+02,
         8.49813439e+01,  -1.04513306e+02,   4.29439820e+01,
        -1.21911502e+01,   2.06108722e+01,   7.51092214e+01,
         1.81627274e+01,   1.40325247e+02,   9.29209208e+00,
         1.13094749e+01,   1.93629320e+01,  -2.90238103e+00,
         7.43540873e+01,   1.03827697e+02,   1.69646030e+02,
         1.73626183e+02,   8.21487774e+01,   4.94573405e+01,
        -1.98593156e+01,  -6.16106249e+01,  -2.33208062e+01,
        -2.73961751e+01,   1.64496706e+01,  -2.71611078e+01,
         5.75240906e+01,  -8.50416368e+00,   2.87900541e+01,
        -4.72940037e+01,   6.81758582e+01,  -1.40049296e+02,
         5.26153868e+01,  -8.75072644e+01,  -2.13547562e+01,
        -6.63962246e+00,  -1.00786070e+01,   4.35521378e+01,
         1.02497040e+02,   4.30988431e+01,   1.96895389e+02,
        -9.17686691e+01,   2.59631140e+02,  -2.05433368e+01,
         2.60484396e+02,   1.22530704e+02,   2.17365310e+02,
        -4.33328491e+01,   1.42612016e+02,  -1.52961082e+02,
         1.69060631e+02,   2.28399880e+01,   2.03517700e+02,
         1.34443286e+02,  -7.55009161e+00,   1.78003790e+02,
        -3.93223821e+02,   2.28171770e+02,  -3.19661685e+02,
         2.24198359e+02,  -1.81579157e+02,   2.32273961e+02,
        -2.33840039e+02,   1.71961372e+02,  -2.11641070e+02,
        -3.75196062e+01,   2.27711860e+01,  -1.99755502e+02,
         1.82364201e+02,  -4.19892638e+02,   2.28127614e+02,
        -5.75435176e+02,   7.95313855e+01,  -4.51128384e+02,
         1.70135132e+02,  -3.94204750e+02,   2.50688013e+02,
        -6.20571020e+02,   2.29403232e+02,  -4.56353371e+02,
         1.84280593e+02,  -8.42490063e+01,   1.46985970e+02,
         2.98392301e+00,   1.16699203e+02,   6.49631891e+01,
         9.26721315e+01,   2.88756010e+02,   7.89231276e+01,
         1.65556420e+02,  -7.71205419e+01,  -5.98777533e+01,
        -1.58939179e+02,  -6.70567806e+01,  -2.83299285e+01,
        -1.24872782e+02,  -8.01048367e+01,  -4.25641855e+02,
        -2.17616550e+02,  -4.05653343e+02,  -2.21807474e+01,
        -1.36344535e+02,   1.85375422e+02,  -1.74213016e+02,
         1.33999253e+02,  -1.67985853e+02,   1.39959021e+02,
         1.49747127e+02,   1.86544721e+02,   2.04608102e+02,
        -3.98516709e+01,  -1.25810914e+02,  -2.17115940e+02,
        -1.79048937e+02,  -2.02567990e+02,  -5.38408076e+00,
        -2.20194709e+02,   1.00551570e+01,  -2.02417927e+02,
         2.41356924e+01,   2.47438442e+01,   1.20827090e+02,
         1.85726242e+02,  -1.76063330e+01,   1.05033062e+02,
        -2.02890970e+02,   3.91807449e+01,  -1.23561893e+02,
         6.42490125e+01,   3.14806575e+01,   9.21181403e+01,
         7.89061244e+01,   5.57808265e+01,  -6.36668804e+00,
        -3.49164406e+01,   3.60048452e+01,  -7.77456996e+01,
        -2.32426866e+00,  -1.05709261e+02,  -4.93712946e+01,
        -1.67871622e+02,  -4.67893517e+01,  -5.20244087e+01,
        -3.96424033e+01,   4.83279942e+01,  -7.52141835e+01,
         2.20485227e+01,  -1.25115721e+02,  -1.32134469e+01,
        -1.26369329e+02,  -2.93800810e+01,  -7.86598747e+01,
         6.79057268e+01,   5.93566632e+01,   1.29532148e+02,
         1.14409691e+02,   5.68281565e+01,   1.74654960e+01,
        -6.42560137e-01,  -3.78480844e+01,  -5.20074484e+00,
        -3.93419783e+01,  -5.72822175e+01,  -1.92175336e+01,
        -3.75981302e+01,  -1.18911701e+01,  -5.17300783e+01,
        -8.25931025e+01,  -6.38132781e+01,  -1.41150549e+01,
         4.22955777e+01,   1.24125831e+02,   1.50187958e+02,
         1.40617750e+02,   1.43539243e+02,   1.16348721e+02,
         1.01739068e+02,   5.54859503e+01,  -3.04760212e+01,
        -1.08578818e+02,  -1.37843635e+02,  -1.26894230e+02,
        -1.09686635e+02,  -1.13844405e+02,  -1.38033229e+02,
        -8.53624090e+01,  -1.42539093e+01,   1.16785300e+02,
         1.12896293e+02,   1.12533146e+02,   6.84009261e+01,
        -6.03725949e+01,  -1.26335156e+00,  -6.18767419e+01,
        -8.08762604e+01,  -5.39078314e+01,  -1.31710781e+02,
        -1.04957693e+02,  -8.40007602e+01,  -1.04733806e+02,
        -5.84058106e+01,  -8.90402368e+01,  -7.24407135e+01,
        -1.09582009e+02,  -7.06181262e+01,  -1.00092949e+02,
        -9.99292132e+01,  -7.18756486e+01,  -1.50098464e+02,
        -1.48912047e+02,  -1.74549469e+02,  -1.59843721e+02,
        -1.23818936e+02,  -7.01716647e+01,  -6.82404308e+00,
        -7.57880806e+01,  -1.18559624e+00,  -3.75441369e+01,
         3.40315209e+00,  -1.64044879e+01,  -5.01795501e+01,
        -6.85985085e+01,  -1.58509542e+02,  -3.09447680e+00,
        -5.09588051e+00,   8.99958754e+01,   4.03932019e+01,
        -1.13313116e+02,  -1.30444275e+02,  -2.52100362e+02,
        -1.45786080e+02,  -1.24295660e+02,  -6.03247903e+01,
        -1.13396995e+02,  -1.13962385e+02,  -1.06574742e+02,
        -7.33998707e+01,  -6.89744161e+01,  -4.92305509e+01,
        -1.54453887e+02,  -1.80986343e+02,  -1.68829224e+02,
        -1.30957710e+02,  -4.96370476e+01,  -4.64836863e+01,
        -7.93537742e+01,  -9.49987807e+01,  -1.72237153e+02,
        -4.05162998e+01,  -8.86982467e+00,   5.13105343e+01,
         7.74715763e+01,   2.18158955e-03,   5.74174189e-02,
         7.18678994e-02,   3.99207032e-03,   5.31615233e-02,
         5.07902476e-02,   5.23068566e-02,   4.01269118e-03,
         2.05190648e+01,   6.21195053e-02,   5.03621967e-02,
         4.76519245e-02,   7.36817895e-02,   4.72905277e-02,
         1.69993768e-02,   6.78078610e-02,   3.12074565e-02,
         3.01951470e-04,   2.48192428e-02,   2.98495453e-02,
         7.59674256e-02,   5.47618183e-02,   1.29098036e+01,
         1.75211824e-02,   5.39457413e-02,   6.64989328e-02,
         5.54539606e-02,   4.28134980e-02,   2.61099613e-02,
        -1.09468523e+01,   5.07498233e-02,   5.28421957e-02,
         7.13569758e-02,   2.63868317e-02,   7.36875220e-02,
         5.14189681e-02,  -1.17527045e+01,   2.81578134e-02,
         3.50422236e-02,   2.88000708e-02,   4.70553262e-03,
         6.30917211e-02,   6.70115604e-03,   7.71242185e-02,
         3.69580617e-02,   6.06066603e-02,   1.85331197e-02,
         3.41332585e-03,   1.49940664e-02,   3.01974857e-03,
        -4.40524107e+01,   7.52715985e-02,   4.98651755e-02,
         2.39981713e-02,   7.30562678e-02,   5.88056801e-02,
         4.09825291e-02,  -6.30456141e+00,   4.45654204e-02,
         4.78108749e-02,   3.34959636e-03,   6.75106046e-02,
         1.76813648e-02,   6.93902117e-02,   1.69632099e-02,
         2.81826941e-02,   1.28294739e-02,   1.91531668e-02,
         5.84239996e-02,   2.79391054e-02,   2.26072917e-02,
         6.91736461e+00,   2.93912705e-02,   6.62365134e-02,
         3.37715651e-02,   5.79258990e-02,   4.40580982e-02,
         2.90274370e-02,   3.79440501e-01,   4.27917337e-02,
         2.05384192e-02,   9.29218448e-03,   4.75474194e-03,
         6.41862514e-02,   7.66982961e-02,   1.20198577e+00,
         4.66235945e-02,   3.11108369e-02,   8.69293968e-04,
         7.02303117e-02,   2.59084180e-02,   4.58388380e-02,
         5.35372586e-02,   7.00161518e-02,   5.54305679e-02,
         5.93995383e-02,   6.13751343e-03,   6.17145874e-03,
         5.50203082e-02,  -2.27277875e+00,   3.71723302e-02,
         5.84390563e-02,   5.53207890e-03,   4.66505158e-02,
         1.88623486e-02,   6.65024817e-02,   3.04438065e-02,
         1.43004597e-02,   7.11449563e-02,   6.97404334e-02,
         3.79413053e-02,   7.07234759e-02,   7.00814469e-02,
        -1.27504121e+02,   6.91402276e-02,   4.70218848e-02,
         4.74236099e-02,   9.31069698e-03,   2.05485113e-02,
         7.32350119e-02,  -7.36753924e+01,   4.02296020e-02,
         1.37961175e-03,   2.11996326e-02,   2.73284080e-02,
         1.08256484e-02,   6.44700230e-02,  -2.22243532e+02,
         5.01540438e-02,   3.52272639e-02,   4.49194610e-02,
         4.41374604e-02,   5.40107225e-03,   8.01255125e-03,
        -1.15590673e+00,   1.49155881e-02,   3.55704799e-02,
         1.37205853e-02,   6.65826021e-02,   5.83399788e-02,
         4.07817620e-02,   1.80603114e+01,   1.14402732e-02,
         4.24518927e-02,   5.51670127e-02,   1.43786024e-03,
         2.60885943e-02,   7.45362577e-03,  -5.54990782e+01,
         6.28162819e-03,   4.43331666e-02,   7.68935629e-02,
         7.28621805e-03,   5.20549274e-03,   2.60096991e-03,
        -3.04722882e+01,   1.98848647e-02,   7.28003361e-02,
         3.94829529e-02,   3.68700685e-02,   1.87011048e-02,
         5.38920477e-02,   6.04741951e-02,   3.88276930e-02,
         5.53718313e-02,   7.32613032e-02,   4.32241052e-02,
         1.22578333e-02,   6.60598248e-02,   9.28999992e+01,
         2.60208104e-03,   6.95830981e-02,   1.89038073e-02,
         1.26782472e-02,   4.99805625e-02,   7.75654922e-02,
         2.96553503e+01,   1.03408824e-02,   3.77196683e-02,
         6.85874561e-02,   2.04270247e-03,   3.02161617e-02,
         4.01727487e-02,  -1.32417726e+02,   4.11195349e-02,
         2.52655592e-02,   3.21563278e-02,   6.89369043e-03,
         7.54495967e-02,   5.91755513e-02,   8.95972666e+01,
         5.36777085e-02,   5.48122072e-02,   3.12530841e-02,
         7.03908769e-02,   4.24918354e-02,   7.26320310e-02,
         5.23712317e-02,   6.07241119e-02,   2.43274182e-03,
         9.69647057e-07,   4.18088849e-02,   4.53311248e-02,
         4.75189186e-03,  -1.16624250e+02,   5.17402692e-02,
         5.36164051e-02,   3.30685643e-02,   1.50387843e-02,
         2.57773313e-02,   6.31230093e-02,   5.46440460e-02,
         4.47191729e-02,   3.16925461e-02,   1.06219198e-02,
         3.57598817e-02,   4.67175586e-02,   3.33562088e-02,
         1.26948992e+01,   5.51035188e-02,   5.25548862e-02,
         1.94592961e-02,   1.72120375e-02,   7.51650553e-03,
         6.72776489e-03,  -6.46861565e+01,   4.84173279e-02,
         2.71697918e-03,   4.90605977e-02,   4.16960976e-02,
         3.03220786e-02,   3.59123298e-02,   1.18474814e-02,
         7.93054484e-03,   6.32684686e-02,   7.02161704e-02,
         4.36291273e-02,   5.62618967e-02,   4.85512495e-02,
        -5.33658722e+01,   4.34161600e-02,   5.64321735e-02,
         1.04011462e-03,   3.34213902e-02,   3.89093526e-02,
         1.64642351e-02,   3.20349715e+02,   1.06917572e-02,
         3.43307459e-02,   2.86041955e-02,   3.83832702e-03,
         1.85766920e-02,   4.25166827e-02,   5.71826961e-02,
         6.53871408e-02,   2.59143514e-02,   6.24991071e-04,
         5.32655825e-02,   2.02971940e-02,   4.66516742e-02,
         2.92243687e+01,   2.39408216e-02,   5.52012972e-02,
         1.50581140e-02,   8.04118800e-03,   2.49948881e-02,
         9.35914637e-03,   3.84945790e+00,   7.16723930e-02,
         1.33133810e-02,   2.71666888e-02,   3.93087775e-02,
         7.18313518e-02,   5.17231140e-02,   3.03088344e-02,
         6.04351728e-03,   5.86350621e-02,   5.47125020e-02,
         6.40538693e-02,   2.32687891e-02,   5.10577120e-02,
         1.12141803e+00,   7.60724128e-02,   1.30335969e-02,
         3.94832006e-02,   1.15389451e-02,   9.55606004e-04,
         5.90470463e-02,   4.89963654e+01,   3.92658307e-02,
         7.14345517e-02,   2.18589396e-02,   6.94526382e-02,
         5.41047858e-02,   6.67866496e-02,  -1.49431851e+01,
         8.99435951e-03,   3.97773423e-02,   4.92181099e-02,
         7.08977230e-02,   5.25272518e-02,   7.46394567e-03,
        -1.68030154e+01,   6.63070442e-02,   1.16872446e-02,
         6.29916425e-02,   5.54303442e-03,   4.13700143e-02,
         2.28137523e-02,   5.17593372e+00,   5.14267754e-02,
         7.02403884e-02,   3.27595187e-03,   4.46628762e-02,
         6.22626525e-02,   5.37219600e-02,  -5.66591266e+01,
         1.98274118e-02,   2.95281530e-04,   2.78256196e-02,
         5.05835225e-02,   2.75694502e-02,   2.12128403e-02,
         4.14296044e-02,   3.56095443e-02,   1.17735647e-02,
         8.96728274e-03,   2.41441960e-02,   4.29765107e-02,
         5.23903760e-02,   3.27086242e+00,   2.25279048e-02,
         1.53389121e-02,   3.33844056e-02,   2.50023152e-02,
         4.07622524e-02,   7.16170424e-02,   1.70422582e+01,
         1.70797066e-02,   5.49950251e-02,   1.38547574e-02,
         2.96471382e-02,   1.67024293e-02,   6.74619092e-02,
         1.92736107e+01,   2.52131153e-02,   1.81451662e-02,
         2.62471416e-02,   7.00535553e-02,   5.65196859e-02,
         2.43409844e-02,  -2.40737759e+01,   1.46410025e-02,
         4.40688456e-02,   6.03016201e-02,   6.58211997e-02,
         7.21298327e-02,   5.18405959e-02,   1.67403103e+01,
         7.39155045e-02,   6.80564880e-02,   4.20960216e-02,
         3.63208076e-02,   2.39622691e-02,   4.46143853e-02,
         4.30501384e-02]), 'nit': 57, 'funcalls': 234})

In [68]:
plt.plot(retval['lai'])


Out[68]:
[<matplotlib.lines.Line2D at 0x1357ec10>]

In [65]: