En este Notebook vamos a utlizar la librería Keras para realizar un entrenamiento de una red convolucional de los datos recogidos en CIFAR10.
Los componentes que vamos a usar son la Convolución 2D y el MaxPooling2D, ya vistos en anteriores Notebooks. Y vamos a empezar a publicar nuevos "procesamientos":
nb_filter:
stack_size: RGB -> 3, Gris -> 1
nb_row: Tamaño (filas) de la máscara (W)
nb_col: Tamaño (columnas) de la máscara (W)
init='uniform': Pueden ser uniform, normal, lecun_uniform, orthogonal
activation='linear': Pueden ser softmax, softplus, relu, tanh, sigmoid, linear...
weights=None
image_shape=None
border_mode='valid': Puede ser valid o full
subsample=(1,1): Subsampleado empleado en la función conv2D de theano
Es un tipo de activación del tipo:
(x+abs(x))/2.0
Referencia sobre las ventajas del uso de las activaciones tipo Rectificadores lineales:
The advantages of using Rectified Linear Units in neural networks are:
http://www.quora.com/What-is-special-about-rectifier-neural-units-used-in-NN-learning
Es un método simple para evitar el overfitting.
In [ ]:
from keras.datasets import cifar10
from keras.preprocessing.image import ImageDataGenerator
from keras.models import Sequential
from keras.layers.core import Dense, Dropout, Activation, Flatten
from keras.layers.convolutional import Convolution2D, MaxPooling2D
from keras.optimizers import SGD, Adadelta, Adagrad
from keras.utils import np_utils, generic_utils
In [ ]:
batch_size = 1000
nb_classes = 10
nb_epoch = 2
data_augmentation = False
In [ ]:
(X_train, y_train), (X_test, y_test) = cifar10.load_data(test_split=0.1)
print X_train.shape[0], 'train samples'
print X_test.shape[0], 'test samples'
In [ ]:
Y_train = np_utils.to_categorical(y_train, nb_classes)
Y_test = np_utils.to_categorical(y_test, nb_classes)
In [ ]:
model = Sequential()
model.add(Convolution2D(32, 3, 3, 3, border_mode='full'))
model.add(Activation('relu'))
model.add(Convolution2D(32, 32, 3, 3))
model.add(Activation('relu'))
model.add(MaxPooling2D(poolsize=(2, 2)))
model.add(Dropout(0.25))
model.add(Convolution2D(64, 32, 3, 3, border_mode='full'))
model.add(Activation('relu'))
model.add(Convolution2D(64, 64, 3, 3))
model.add(Activation('relu'))
model.add(MaxPooling2D(poolsize=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten(64*8*8))
model.add(Dense(64*8*8, 512, init='normal'))
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Dense(512, nb_classes, init='normal'))
model.add(Activation('softmax'))
In [ ]:
sgd = SGD(lr=0.01, decay=1e-7, momentum=0.9, nesterov=True)
model.compile(loss='categorical_crossentropy', optimizer=sgd)
In [ ]:
if not data_augmentation:
print "Not using data augmentation or normalization"
X_train = X_train.astype("float32")
X_test = X_train.astype("float32")
X_train /= 255
X_test /= 255
print X_train[0]
model.fit(X_train, Y_train, batch_size=batch_size, nb_epoch=10)
score = model.evaluate(X_test, Y_test, batch_size=batch_size)
print 'Test score:', score
else:
print "Using real time data augmentation"
# this will do preprocessing and realtime data augmentation
datagen = ImageDataGenerator(
featurewise_center=True, # set input mean to 0 over the dataset
samplewise_center=False, # set each sample mean to 0
featurewise_std_normalization=True, # divide inputs by std of the dataset
samplewise_std_normalization=False, # divide each input by its std
zca_whitening=False, # apply ZCA whitening
rotation_range=20, # randomly rotate images in the range (degrees, 0 to 180)
width_shift_range=0.2, # randomly shift images horizontally (fraction of total width)
height_shift_range=0.2, # randomly shift images vertically (fraction of total height)
horizontal_flip=True, # randomly flip images
vertical_flip=False) # randomly flip images
# compute quantities required for featurewise normalization
# (std, mean, and principal components if ZCA whitening is applied)
datagen.fit(X_train)
for e in range(nb_epoch):
print '-'*40
print 'Epoch', e
print '-'*40
print "Training..."
# batch train with realtime data augmentation
progbar = generic_utils.Progbar(X_train.shape[0])
for X_batch, Y_batch in datagen.flow(X_train, Y_train):
loss = model.train(X_batch, Y_batch)
progbar.add(X_batch.shape[0], values=[("train loss", loss)])
In [ ]:
print "Testing..."
# test time!
progbar = generic_utils.Progbar(X_test.shape[0])
for X_batch, Y_batch in datagen.flow(X_test, Y_test):
score = model.test(X_batch, Y_batch)
progbar.add(X_batch.shape[0], values=[("test loss", score)])