In [1]:
from msmbuilder.dataset import dataset
import mdtraj as md
from tqdm import tqdm_notebook
In [2]:
wt_xyz = dataset("/Users/je714/wt_data/*/05*nc", topology="/Users/je714/wt_data/test.pdb",
fmt='mdtraj', stride=20)
In [84]:
ff99SB_xyz = dataset("/Users/je714/Troponin/IAN_Troponin/completehowarthcut/salted/ff99SB/*SALT*/*/*noIONS*.nc",
topology="/Users/je714/Troponin/IAN_Troponin/completehowarthcut/salted/ff99SB/WT_ff9SB_noIons.prmtop",
fmt='mdtraj', stride=20)
In [105]:
for file in ff99SB_xyz:
print(file)
In [3]:
traj0 = wt_xyz[0]
In [4]:
%pylab inline
In [7]:
reference = md.load('/Users/je714/wt_data/test.pdb')
In [8]:
test_frame = wt_xyz[0][0]
In [9]:
test_frame
Out[9]:
In [10]:
reference
Out[10]:
In [11]:
md.rmsd(test_frame, reference) * 10
Out[11]:
In [17]:
distances = []
for traj in tqdm_notebook(wt_xyz):
for i in range(traj.n_frames):
distances.append(md.rmsd(traj[i], reference))
In [85]:
distances_ff99SB = []
for traj in tqdm_notebook(ff99SB_xyz):
for i in range(traj.n_frames):
distances_ff99SB.append(md.rmsd(traj[i], reference))
In [74]:
test=np.concatenate(distances)
In [76]:
test.shape
Out[76]:
In [69]:
import seaborn as sns; sns.set_style("white"); sns.set_palette("viridis")
plt.plot(np.concatenate(distances)*10)
Out[69]:
In [106]:
plt.plot(np.concatenate(distances_ff99SB)*10)
Out[106]:
In [87]:
def RMSD_density(rmsd_list):
sns.distplot(np.concatenate(rmsd_list)*10, kde_kws={"shade": True}, hist=False)
plt.axvline(np.mean(np.concatenate(rmsd_list)*10), ls='dashed')
plt.ylabel("Density")
plt.annotate("$\mu$:%.2f Å" % np.mean(np.concatenate(rmsd_list)*10), xy=(2,0.3))
plt.annotate("$\sigma$:%.2f Å" % np.std(np.concatenate(rmsd_list)*10), xy=(2,0.28))
plt.xlabel("RMSD (Å)")
In [91]:
RMSD_density(distances)
plt.xlim(0,20)
Out[91]:
In [104]:
sns.distplot(np.concatenate(distances)*10, kde_kws={"shade": True}, hist=False, label='ff14SB')
sns.distplot(np.concatenate(distances_ff99SB)*10, kde_kws={"shade": True}, hist=False, label='ff99SB')
plt.ylabel("Density")
plt.xlabel("RMSD (Å)")
plt.xticks([x for x in range(0,21) if x%2 == 0])
plt.savefig("/Users/je714/Dropbox (Imperial)/ESAreport/rmsd_distrib.png", format='png', dpi=300)
In [71]:
takeda = md.load("/Users/je714/Troponin/IAN_Troponin/completehowarthcut/salted/1j1d.pdb")
In [72]:
np.mean
Out[72]:
In [73]:
md.rmsd(test_frame, takeda)
In [ ]: