In [1]:
%matplotlib inline
import matplotlib.pyplot as plt
import numpy as np
import scipy.optimize as opt
For this problem you are given a raw dataset in the file decay_osc.npz. This file contains three arrays:
tdata: an array of time valuesydata: an array of y valuesdy: the absolute uncertainties (standard deviations) in yYour job is to fit the following model to this data:
$$ y(t) = A e^{-\lambda t} \cos{\omega t + \delta} $$First, import the data using NumPy and make an appropriately styled error bar plot of the raw data.
In [12]:
decay = np.load('decay_osc.npz')
tdata = decay['tdata']
ydata = decay['ydata']
dy = decay['dy']
In [14]:
plt.errorbar(tdata, ydata, dy,
fmt='.k', ecolor='lightgray')
plt.xlabel('t')
plt.ylabel('y');
In [ ]:
assert True # leave this to grade the data import and raw data plot
Now, using curve_fit to fit this model and determine the estimates and uncertainties for the parameters:
curve_fit to get a good fit.absolute_sigma=True.
In [17]:
def model(xdata, A, lam, omega, delta):
return A*np.exp(-lam*tdata)*np.cos(omega*tdata)+delta
theta_best, theta_cov = opt.curve_fit(model, tdata, ydata, sigma=dy)
print('A = {0:.3f} +/- {1:.3f}'.format(theta_best[0], np.sqrt(theta_cov[0,0])))
print('lam = {0:.3f} +/- {1:.3f}'.format(theta_best[1], np.sqrt(theta_cov[1,1])))
print('omega = {0:.3f} +/- {1:.3f}'.format(theta_best[2], np.sqrt(theta_cov[2,2])))
print('delta = {0:.3f} +/- {1:.3f}'.format(theta_best[3], np.sqrt(theta_cov[3,3])))
In [ ]:
assert True # leave this cell for grading the fit; should include a plot and printout of the parameters+errors