In [1]:
import numpy as np
In [4]:
%matplotlib inline
from matplotlib import pyplot as plt
import seaborn as sns
In [29]:
import antipackage
from github.ellisonbg.misc import vizarray as va
In [6]:
data = [0,2,4,6]
a = np.array(data)
In [7]:
type(a)
Out[7]:
In [8]:
a
Out[8]:
In [9]:
a.shape
Out[9]:
In [10]:
a.ndim
Out[10]:
In [11]:
a.size
Out[11]:
In [12]:
a.nbytes
Out[12]:
In [13]:
a.dtype
Out[13]:
In [17]:
data = [[0.0,2.0,4.0,6.0],[1.0,3.0,5.0,7.0], [1.0,2.0,3.0,4.0]]
b = np.array(data)
In [18]:
b
Out[18]:
In [19]:
b.shape, b.ndim, b.size, b.nbytes
Out[19]:
In [25]:
c = np.arange(0.0, 20.0, 2.0)
c
Out[25]:
In [27]:
e = np.linspace(0.0, 9.0, 3)
e
Out[27]:
In [30]:
np.empty((4,4))
Out[30]:
In [33]:
np.zeros((3,3))
Out[33]:
In [37]:
np.ones((3,3))
Out[37]:
In [53]:
a = np.array([1,2,3,4])
In [54]:
a, a.dtype
Out[54]:
In [65]:
b = np.zeros((2,2), dtype=np.complex64)
b
Out[65]:
In [69]:
c = np.arange(0, 20, 4, dtype=np.float)
c
Out[69]:
In [70]:
d = c.astype(dtype=np.int)
d
Out[70]:
In [84]:
np.float*?
In [88]:
a = np.empty((3,3), dtype=np.int64)
a.fill(6)
a
Out[88]:
In [94]:
b = np.ones((3,3))
b
Out[94]:
In [95]:
a+b
Out[95]:
In [96]:
b/a
Out[96]:
In [97]:
a/b
Out[97]:
In [98]:
a**2
Out[98]:
In [99]:
np.pi*b
Out[99]:
In [109]:
a = np.random.rand(6,6)
In [110]:
a[0,0]
Out[110]:
In [114]:
a[-1,-1] == a[5,5]
Out[114]:
In [115]:
a[:,0]
Out[115]:
In [116]:
a[0:2,0:2]
Out[116]:
In [117]:
a[0:5,0:5] = 1.0
In [118]:
a
Out[118]:
In [ ]:
ages = np.array([23,56,67,89,23,56,27,12,8,72])
genders = np.array(['m','m','f','f','m','f'])