In [1]:
'''
Functions for downloading and reading MNIST data.
'''
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import gzip
import os
import tempfile
import numpy
from six.moves import urllib
from six.moves import xrange # pylint: disable=redefined-builtin
import tensorflow as tf
from tensorflow.contrib.learn.python.learn.datasets.mnist import read_data_sets
mnist = read_data_sets("MNIST_data/", one_hot=True)
In [2]:
# input image
x = tf.placeholder('float', [None, 784])
# Params
W = tf.Variable(tf.zeros([784, 10]))
b = tf.Variable(tf.zeros([10]))
# output and true value
y = tf.nn.softmax(tf.matmul(x, W) + b)
y_ = tf.placeholder('float', [None, 10])
# loss function
cross_entropy = -tf.reduce_sum(y_*tf.log(y))
train_step = tf.train.GradientDescentOptimizer(0.01).minimize(cross_entropy)
init_op = tf.global_variables_initializer()
with tf.Session() as sess:
sess.run(init_op)
for i in range(1, 1001):
batch_xs, batch_ys = mnist.train.next_batch(100)
sess.run(train_step, feed_dict = {x:batch_xs, y_:batch_ys})
if i % 100 == 0:
correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(y_,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
result = sess.run(accuracy, feed_dict={x: mnist.test.images, y_: mnist.test.labels})
print('step:', i, 'accuracy : ', result)