In [1]:
# Events detection
In [2]:
import pandas as pd
import numpy as np
%matplotlib inline
import matplotlib.pyplot as plt
In [3]:
import sys
sys.path.insert(0, '../src/')
from events_detection import *
In [ ]:
In [4]:
data = np.loadtxt('../results/search_seisme.txt')
plt.plot(data)
Out[4]:
In [5]:
import statsmodels.api as sm
res = sm.tsa.seasonal_decompose(data, freq=7)
plt.plot(res.resid)
Out[5]:
In [6]:
lag = 100
thresh = 3.5
influence = 0.01
signal, avg, std = peaks_detection(data, lag=lag, thresh=thresh, influence=influence)
plt.plot(data)
plt.plot(avg+std*thresh)
plt.plot(avg-std*thresh)
plt.plot(signal*50)
#plt.xlim((700,800))
Out[6]:
In [7]:
signal, avg, std = peaks_detection(np.abs(res.resid), lag=lag, thresh=thresh, influence=influence)
plt.plot(abs(res.resid))
plt.plot(avg+std*thresh)
plt.plot(avg-std*thresh)
plt.plot(abs(signal*50))
#plt.xlim((700,800))
Out[7]:
In [8]:
signal, avg, std = peaks_detection(res.trend, lag=lag, thresh=thresh, influence=influence)
plt.plot(res.trend)
plt.plot(avg+std*thresh)
plt.plot(avg-std*thresh)
plt.plot(abs(signal*50))
#plt.xlim((700,800))
Out[8]:
In [ ]:
In [ ]: