A summary of the experimental procedure goes here
In [1]:
%%javascript
IPython.OutputArea.auto_scroll_threshold = 9999;
In [2]:
%matplotlib inline
In [3]:
import re
import pymc
import numpy as np
In [4]:
# Load data from Tecan iControl XML file.
from assaytools import platereader
row_names = ['A - Src','B - Buffer','C - Src','D - Buffer', 'E - Src','F - Buffer','G - Src','H - Buffer'] # row info
# Greiner 655809 UV-Star 96-well UV-transparent plate
# http://www.greinerbioone.com/nl/belgium/articles/catalogue/article/116_8_bl/27704/
# CAD drawing: http://www.greinerbioone.com/nl/belgium/files/1464609/655809.pdf
filename = "data/ExtendUV_WIP_SMH_SrcBos_Extend_013015_mdfx_201502.xml" # Src:BOS data
sections = platereader.read_icontrol_xml(filename)
In [5]:
# Extract observed fluorescence signals
complex_row = 'C'
ligand_row = 'D'
top_complex_fluorescence = sections['280_TopRead']['rows'][complex_row]
top_ligand_fluorescence = sections['280_TopRead']['rows'][ligand_row]
bottom_complex_fluorescence = sections['280_BottomRead']['rows'][complex_row]
bottom_ligand_fluorescence = sections['280_BottomRead']['rows'][ligand_row]
# Extract observed absorbance signals
ligand_ex_absorbance = sections['Abs_280']['rows'][ligand_row]
ligand_em_absorbance = sections['Abs_480']['rows'][ligand_row]
# Stated concentrations of protein and ligand.
Pstated = 0.5e-6 * np.ones([12],np.float64) # protein concentration, M
Lstated = np.array([20.0e-6,9.15e-6,4.18e-6,1.91e-6,0.875e-6,0.4e-6,0.183e-6,0.0837e-6,0.0383e-6,0.0175e-6,0.008e-6,0.0001e-6], np.float64)
# Protein concentration (M) (modified form from Sonya, replacing 0 with a small number because we can't handle zero concentrations yet)
In [6]:
# Assay configuration details
import math
assay_volume = 100e-6 # assay volume, L
#well_area = 0.3969 # well area, cm^2 for 4ti-0223 [http://4ti.co.uk/files/1614/0542/7662/4ti-0223_Marketing_Drawing.pdf]
ravg = (0.696/2. + 0.658/2.)/2. # average radius for Greiner UV-Star 96-well flat-bottom plates: http://www.greinerbioone.com/nl/belgium/files/1464609/655809.pdf
well_area = math.pi * ravg**2
path_length = assay_volume * 1000 / well_area # cm, needed for inner filter effect corrections
# Uncertainties in protein and ligand concentrations.
dPstated = 0.35 * Pstated # protein concentration uncertainty
dLstated = 0.08 * Lstated # ligand concentraiton uncertainty (due to gravimetric preparation and HP D300 dispensing)
In [7]:
# Create the pymc model
from assaytools import pymcmodels
pymc_model = pymcmodels.make_model(Pstated, dPstated, Lstated, dLstated,
top_complex_fluorescence=top_complex_fluorescence,
top_ligand_fluorescence=top_ligand_fluorescence,
bottom_complex_fluorescence=bottom_complex_fluorescence,
bottom_ligand_fluorescence=bottom_ligand_fluorescence,
use_primary_inner_filter_correction=True,
use_secondary_inner_filter_correction=True,
assay_volume=assay_volume, well_area=well_area, DG_prior='uniform',
ligand_ex_absorbance=ligand_ex_absorbance, ligand_em_absorbance=ligand_em_absorbance)
In [8]:
from assaytools import plots
figure = plots.plot_measurements(Lstated, Pstated, pymc_model)
In [9]:
# Find the maximum a posteriori fit (will only be local optimum, and several cycles are needed for reasonable fit)
map = pymcmodels.map_fit(pymc_model)
In [10]:
figure = plots.plot_measurements(Lstated, Pstated, pymc_model, map=map)
In [11]:
# Sample the model posterior with MCMC
mcmc = pymcmodels.run_mcmc(pymc_model)
In [12]:
plots.plot_mcmc_results(Lstated, Pstated, path_length, mcmc)
In [13]:
figure = plots.plot_measurements(Lstated, Pstated, pymc_model, mcmc=mcmc)
In [14]:
# Fit maximum a posteriori estimate one more time
map = pymcmodels.map_fit(pymc_model)
In [15]:
figure = plots.plot_measurements(Lstated, Pstated, pymc_model, map=map)
In [16]:
pymcmodels.show_summary(pymc_model, map, mcmc)