In [1]:
import altair as alt
from vega_datasets import data
iris = data.iris()
alt.Chart(iris).mark_point().encode(
x='petalLength',
y='petalWidth',
color='species'
)
Out[1]:
In [2]:
import altair as alt
from vega_datasets import data
source = data.movies.url
pts = alt.selection(type="single", encodings=['x'])
rect = alt.Chart(data.movies.url).mark_rect().encode(
alt.X('IMDB_Rating:Q', bin=True),
alt.Y('Rotten_Tomatoes_Rating:Q', bin=True),
alt.Color('count()',
scale=alt.Scale(scheme='greenblue'),
legend=alt.Legend(title='Total Records')
)
)
circ = rect.mark_point().encode(
alt.ColorValue('grey'),
alt.Size('count()',
legend=alt.Legend(title='Records in Selection')
)
).transform_filter(
pts
)
bar = alt.Chart(source).mark_bar().encode(
x='Major_Genre:N',
y='count()',
color=alt.condition(pts, alt.ColorValue("steelblue"), alt.ColorValue("grey"))
).properties(
selection=pts,
width=550,
height=200
)
alt.vconcat(
rect + circ,
bar
).resolve_legend(
color="independent",
size="independent"
)
Out[2]:
In [ ]: