Training with params :
{'gamma': 0.65, 'sample_rate': 0.04, 'learn_rate': 4.62, 'max_depth': 100, 'ntrees': 750, 'col_sample_rate': 0.33}
---------------------------------------------------------------------------
H2OResponseError Traceback (most recent call last)
<ipython-input-22-5266f37f4ab6> in <module>()
49 trials = Trials()
50
---> 51 optimize(trials)
<ipython-input-22-5266f37f4ab6> in optimize(trials)
40
41
---> 42 best = fmin(score, space, algo=tpe.suggest, trials=trials, max_evals=1000)
43 print("Best params:")
44 print(best)
/home/arvc/anaconda3/envs/tensorflow/lib/python3.5/site-packages/hyperopt/fmin.py in fmin(fn, space, algo, max_evals, trials, rstate, allow_trials_fmin, pass_expr_memo_ctrl, catch_eval_exceptions, verbose, return_argmin)
304 verbose=verbose,
305 catch_eval_exceptions=catch_eval_exceptions,
--> 306 return_argmin=return_argmin,
307 )
308
/home/arvc/anaconda3/envs/tensorflow/lib/python3.5/site-packages/hyperopt/base.py in fmin(self, fn, space, algo, max_evals, rstate, verbose, pass_expr_memo_ctrl, catch_eval_exceptions, return_argmin)
631 pass_expr_memo_ctrl=pass_expr_memo_ctrl,
632 catch_eval_exceptions=catch_eval_exceptions,
--> 633 return_argmin=return_argmin)
634
635
/home/arvc/anaconda3/envs/tensorflow/lib/python3.5/site-packages/hyperopt/fmin.py in fmin(fn, space, algo, max_evals, trials, rstate, allow_trials_fmin, pass_expr_memo_ctrl, catch_eval_exceptions, verbose, return_argmin)
317 verbose=verbose)
318 rval.catch_eval_exceptions = catch_eval_exceptions
--> 319 rval.exhaust()
320 if return_argmin:
321 return trials.argmin
/home/arvc/anaconda3/envs/tensorflow/lib/python3.5/site-packages/hyperopt/fmin.py in exhaust(self)
196 def exhaust(self):
197 n_done = len(self.trials)
--> 198 self.run(self.max_evals - n_done, block_until_done=self.async)
199 self.trials.refresh()
200 return self
/home/arvc/anaconda3/envs/tensorflow/lib/python3.5/site-packages/hyperopt/fmin.py in run(self, N, block_until_done)
170 else:
171 # -- loop over trials and do the jobs directly
--> 172 self.serial_evaluate()
173
174 if stopped:
/home/arvc/anaconda3/envs/tensorflow/lib/python3.5/site-packages/hyperopt/fmin.py in serial_evaluate(self, N)
87 ctrl = base.Ctrl(self.trials, current_trial=trial)
88 try:
---> 89 result = self.domain.evaluate(spec, ctrl)
90 except Exception as e:
91 logger.info('job exception: %s' % str(e))
/home/arvc/anaconda3/envs/tensorflow/lib/python3.5/site-packages/hyperopt/base.py in evaluate(self, config, ctrl, attach_attachments)
836 memo=memo,
837 print_node_on_error=self.rec_eval_print_node_on_error)
--> 838 rval = self.fn(pyll_rval)
839
840 if isinstance(rval, (float, int, np.number)):
<ipython-input-22-5266f37f4ab6> in score(params)
20
21
---> 22 predictions = model.predict(validframe)
23 score = mean_absolute_error(np.exp(validframe["loss"].as_data_frame()) - shift, np.exp(predictions.as_data_frame()) - shift)
24 if score < min_mae:
/home/arvc/anaconda3/envs/tensorflow/lib/python3.5/site-packages/h2o/model/model_base.py in predict(self, test_data)
146 """
147 if not isinstance(test_data, h2o.H2OFrame): raise ValueError("test_data must be an instance of H2OFrame")
--> 148 j = H2OJob(h2o.api("POST /4/Predictions/models/%s/frames/%s" % (self.model_id, test_data.frame_id)),
149 self._model_json['algo'] + " prediction")
150 j.poll()
/home/arvc/anaconda3/envs/tensorflow/lib/python3.5/site-packages/h2o/h2o.py in api(endpoint, data, json, filename, save_to)
82 # type checks are performed in H2OConnection class
83 _check_connection()
---> 84 return h2oconn.request(endpoint, data=data, json=json, filename=filename, save_to=save_to)
85
86
/home/arvc/anaconda3/envs/tensorflow/lib/python3.5/site-packages/h2o/backend/connection.py in request(self, endpoint, data, json, filename, save_to)
257 auth=self._auth, verify=self._verify_ssl_cert, proxies=self._proxies)
258 self._log_end_transaction(start_time, resp)
--> 259 return self._process_response(resp, save_to)
260
261 except (requests.exceptions.ConnectionError, requests.exceptions.HTTPError) as e:
/home/arvc/anaconda3/envs/tensorflow/lib/python3.5/site-packages/h2o/backend/connection.py in _process_response(response, save_to)
584 # Client errors (400 = "Bad Request", 404 = "Not Found", 412 = "Precondition Failed")
585 if status_code in {400, 404, 412} and isinstance(data, (H2OErrorV3, H2OModelBuilderErrorV3)):
--> 586 raise H2OResponseError(data)
587
588 # Server errors (notably 500 = "Server Error")
H2OResponseError: Server error water.exceptions.H2OKeyNotFoundArgumentException:
Error: Object 'None' not found in function: predict for argument: model
Request: POST /4/Predictions/models/None/frames/Key_Frame__upload_8fe6e9bca7ea6ddf6fe559dff4ec4da1.hex