In [20]:
import numpy as np
from scipy import signal
In [113]:
a = [0.0, 0.5, 1, 1, 0.5,0]
In [114]:
v = np.array([
[950, 19.1896705627, 36354, 1756.08353364],
[850, 19.1997642517, 35931, 1814.82640178],
[750, 19.196187973, 35626, 1903.35942629],
[650, 19.3742542267, 35249, 2042.45238462],
[550, 19.4377803802, 34957, 2307.62051956],
[450, 19.7083377838, 34599, 2565.60730542],
[350, 19.1574268341, 35531, 1832.51903223],
[250, 19.2386646271, 35195, 1935.40388754],
[150, 19.3538646698, 34854, 2091.50045713],
[50, 19.7020626068, 34513, 2507.27835806],
[-50, 19.7284641266, 34216, 2642.11445641],
[-150, 19.3782272339, 33938, 2513.22731098],
[-250, 19.182964325, 33661, 2332.66499335],
[-350, 19.1562023163, 33423, 2156.8595173],
[-450, 19.0811309814, 33244, 2005.80851712],
[-550, 19.003030777, 33006, 1875.56561486],
[-650, 20.9142875671, 32825, 1776.31074684],
[-750, 21.9814109802, 32614, 1685.1277602],
[-850, 22.9407672882, 32497, 1611.44361927],
[-950, 23.9337043762, 32320, 1553.55391814],
])
v = v[:,1]
v
#Normalized Data
na = (a - np.mean(a)) / (np.std(a) * len(a))
nv = (v - np.mean(v)) / np.std(v)
n = (v-min(v))/(max(v)-min(v))
In [115]:
n, len(n)
Out[115]:
In [ ]:
In [116]:
corr = np.correlate(n, template, "same")
corr, len(corr)
Out[116]:
In [117]:
corr = signal.correlate(n, template, mode='valid')
corr, len(corr)
Out[117]:
In [118]:
corr = signal.correlate(nv, na, mode='valid')
corr, len(corr)
Out[118]:
In [119]:
corr = signal.correlate(nv, na, mode='same')
corr, len(corr)
Out[119]:
In [ ]: