Face Generation

In this project, you'll use generative adversarial networks to generate new images of faces.

Get the Data

You'll be using two datasets in this project:

  • MNIST
  • CelebA

Since the celebA dataset is complex and you're doing GANs in a project for the first time, we want you to test your neural network on MNIST before CelebA. Running the GANs on MNIST will allow you to see how well your model trains sooner.

If you're using FloydHub, set data_dir to "/input" and use the FloydHub data ID "R5KrjnANiKVhLWAkpXhNBe".


In [1]:
#data_dir = './data'

# FloydHub - Use with data ID "R5KrjnANiKVhLWAkpXhNBe"
data_dir = '/input'


"""
DON'T MODIFY ANYTHING IN THIS CELL
"""
import helper

helper.download_extract('mnist', data_dir)
helper.download_extract('celeba', data_dir)


Downloading mnist: 9.92MB [00:02, 3.80MB/s]                            
Extracting mnist: 100%|██████████| 60.0K/60.0K [00:11<00:00, 5.40KFile/s]
Downloading celeba: 1.44GB [00:33, 43.5MB/s]                               
Extracting celeba...

Explore the Data

MNIST

As you're aware, the MNIST dataset contains images of handwritten digits. You can view the first number of examples by changing show_n_images.


In [2]:
show_n_images = 25

"""
DON'T MODIFY ANYTHING IN THIS CELL
"""
%matplotlib inline
import os
from glob import glob
from matplotlib import pyplot

mnist_images = helper.get_batch(glob(os.path.join(data_dir, 'mnist/*.jpg'))[:show_n_images], 28, 28, 'L')
pyplot.imshow(helper.images_square_grid(mnist_images, 'L'), cmap='gray')


Out[2]:
<matplotlib.image.AxesImage at 0x7faa9ef93470>

CelebA

The CelebFaces Attributes Dataset (CelebA) dataset contains over 200,000 celebrity images with annotations. Since you're going to be generating faces, you won't need the annotations. You can view the first number of examples by changing show_n_images.


In [3]:
show_n_images = 25

"""
DON'T MODIFY ANYTHING IN THIS CELL
"""
mnist_images = helper.get_batch(glob(os.path.join(data_dir, 'img_align_celeba/*.jpg'))[:show_n_images], 28, 28, 'RGB')
pyplot.imshow(helper.images_square_grid(mnist_images, 'RGB'))


Out[3]:
<matplotlib.image.AxesImage at 0x7faa9ef29d68>

Preprocess the Data

Since the project's main focus is on building the GANs, we'll preprocess the data for you. The values of the MNIST and CelebA dataset will be in the range of -0.5 to 0.5 of 28x28 dimensional images. The CelebA images will be cropped to remove parts of the image that don't include a face, then resized down to 28x28.

The MNIST images are black and white images with a single color channel while the CelebA images have 3 color channels (RGB color channel).

Build the Neural Network

You'll build the components necessary to build a GANs by implementing the following functions below:

  • model_inputs
  • discriminator
  • generator
  • model_loss
  • model_opt
  • train

Check the Version of TensorFlow and Access to GPU

This will check to make sure you have the correct version of TensorFlow and access to a GPU


In [4]:
"""
DON'T MODIFY ANYTHING IN THIS CELL
"""
from distutils.version import LooseVersion
import warnings
import tensorflow as tf

# Check TensorFlow Version
assert LooseVersion(tf.__version__) >= LooseVersion('1.0'), 'Please use TensorFlow version 1.0 or newer.  You are using {}'.format(tf.__version__)
print('TensorFlow Version: {}'.format(tf.__version__))

# Check for a GPU
if not tf.test.gpu_device_name():
    warnings.warn('No GPU found. Please use a GPU to train your neural network.')
else:
    print('Default GPU Device: {}'.format(tf.test.gpu_device_name()))


TensorFlow Version: 1.0.0
Default GPU Device: /gpu:0

Input

Implement the model_inputs function to create TF Placeholders for the Neural Network. It should create the following placeholders:

  • Real input images placeholder with rank 4 using image_width, image_height, and image_channels.
  • Z input placeholder with rank 2 using z_dim.
  • Learning rate placeholder with rank 0.

Return the placeholders in the following the tuple (tensor of real input images, tensor of z data)


In [5]:
import problem_unittests as tests

def model_inputs(image_width, image_height, image_channels, z_dim):
    """
    Create the model inputs
    :param image_width: The input image width
    :param image_height: The input image height
    :param image_channels: The number of image channels
    :param z_dim: The dimension of Z
    :return: Tuple of (tensor of real input images, tensor of z data, learning rate)
    """
    # TODO: Implement Function
    real_input = tf.placeholder(tf.float32, (None, image_width, image_height, image_channels), name='real_input')
    z_input = tf.placeholder(tf.float32, (None, z_dim), name='z_input')
    lr = tf.placeholder(tf.float32, name='learning_rate')
    return (real_input, z_input, lr)


"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
tests.test_model_inputs(model_inputs)


Tests Passed

Discriminator

Implement discriminator to create a discriminator neural network that discriminates on images. This function should be able to reuse the variabes in the neural network. Use tf.variable_scope with a scope name of "discriminator" to allow the variables to be reused. The function should return a tuple of (tensor output of the generator, tensor logits of the generator).


In [6]:
def discriminator(images, reuse=False):
    """
    Create the discriminator network
    :param image: Tensor of input image(s)
    :param reuse: Boolean if the weights should be reused
    :return: Tuple of (tensor output of the discriminator, tensor logits of the discriminator)
    """
    # TODO: Implement Function
    with tf.variable_scope('discriminator', reuse=reuse):
        alpha = 0.2
        # Input layer is 28x28x?
        x1 = tf.layers.conv2d(images, 64, 5, strides=2, padding='same')
        relu1 = tf.maximum(alpha * x1, x1)
        # 14x14x64
        
        x2 = tf.layers.conv2d(relu1, 128, 5, strides=2, padding='same')
        bn2 = tf.layers.batch_normalization(x2, training=True)
        relu2 = tf.maximum(alpha * bn2, bn2)
        # 7x7x128
        
        # Flatten it
        flat = tf.reshape(relu2, (-1, 7*7*128))
        logits = tf.layers.dense(flat, 1)
        output = tf.sigmoid(logits)
    return (output, logits)


"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
tests.test_discriminator(discriminator, tf)


Tests Passed

Generator

Implement generator to generate an image using z. This function should be able to reuse the variabes in the neural network. Use tf.variable_scope with a scope name of "generator" to allow the variables to be reused. The function should return the generated 28 x 28 x out_channel_dim images.


In [7]:
def generator(z, out_channel_dim, is_train=True):
    """
    Create the generator network
    :param z: Input z
    :param out_channel_dim: The number of channels in the output image
    :param is_train: Boolean if generator is being used for training
    :return: The tensor output of the generator
    """
    # TODO: Implement Function
    reuse = not is_train
    with tf.variable_scope('generator', reuse=reuse):
        alpha = 0.2
        # First fully connected layer
        x1 = tf.layers.dense(z, 7*7*256)
        # Reshape it to start the convolutional stack
        x1 = tf.reshape(x1, (-1, 7, 7, 256))
        x1 = tf.layers.batch_normalization(x1, training=is_train)
        x1 = tf.maximum(alpha * x1, x1)
        # 7x7x256 now
        
        x2 = tf.layers.conv2d_transpose(x1, 128, 5, strides=2, padding='same')
        x2 = tf.layers.batch_normalization(x2, training=is_train)
        x2 = tf.maximum(alpha * x2, x2)
        # 14x14x128 now
        
        # Output layer
        logits = tf.layers.conv2d_transpose(x2, out_channel_dim, 5, strides=2, padding='same')
        # 28x28x? now
        
        output = tf.tanh(logits)
        
    return output


"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
tests.test_generator(generator, tf)


Tests Passed

Loss

Implement model_loss to build the GANs for training and calculate the loss. The function should return a tuple of (discriminator loss, generator loss). Use the following functions you implemented:

  • discriminator(images, reuse=False)
  • generator(z, out_channel_dim, is_train=True)

In [8]:
def model_loss(input_real, input_z, out_channel_dim):
    """
    Get the loss for the discriminator and generator
    :param input_real: Images from the real dataset
    :param input_z: Z input
    :param out_channel_dim: The number of channels in the output image
    :return: A tuple of (discriminator loss, generator loss)
    """
    # TODO: Implement Function
    g_model = generator(input_z, out_channel_dim)
    d_model_real, d_logits_real = discriminator(input_real)
    d_model_fake, d_logits_fake = discriminator(g_model, reuse=True)
    
    d_loss_real = tf.reduce_mean(
        tf.nn.sigmoid_cross_entropy_with_logits(logits=d_logits_real, labels=tf.ones_like(d_model_real)))
    d_loss_fake = tf.reduce_mean(
        tf.nn.sigmoid_cross_entropy_with_logits(logits=d_logits_fake, labels=tf.zeros_like(d_model_fake)))
    g_loss = tf.reduce_mean(
        tf.nn.sigmoid_cross_entropy_with_logits(logits=d_logits_fake, labels=tf.ones_like(d_model_fake)))

    d_loss = d_loss_real + d_loss_fake
    
    return (d_loss, g_loss)


"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
tests.test_model_loss(model_loss)


Tests Passed

Optimization

Implement model_opt to create the optimization operations for the GANs. Use tf.trainable_variables to get all the trainable variables. Filter the variables with names that are in the discriminator and generator scope names. The function should return a tuple of (discriminator training operation, generator training operation).


In [9]:
def model_opt(d_loss, g_loss, learning_rate, beta1):
    """
    Get optimization operations
    :param d_loss: Discriminator loss Tensor
    :param g_loss: Generator loss Tensor
    :param learning_rate: Learning Rate Placeholder
    :param beta1: The exponential decay rate for the 1st moment in the optimizer
    :return: A tuple of (discriminator training operation, generator training operation)
    """
    # TODO: Implement Function
    # Get weights and bias to update
    t_vars = tf.trainable_variables()
    d_vars = [var for var in t_vars if var.name.startswith('discriminator')]
    g_vars = [var for var in t_vars if var.name.startswith('generator')]

    # Optimize
    with tf.control_dependencies(tf.get_collection(tf.GraphKeys.UPDATE_OPS)):
        d_train_opt = tf.train.AdamOptimizer(learning_rate, beta1=beta1).minimize(d_loss, var_list=d_vars)
        g_train_opt = tf.train.AdamOptimizer(learning_rate, beta1=beta1).minimize(g_loss, var_list=g_vars)   
    return (d_train_opt, g_train_opt)


"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
tests.test_model_opt(model_opt, tf)


Tests Passed

Neural Network Training

Show Output

Use this function to show the current output of the generator during training. It will help you determine how well the GANs is training.


In [10]:
"""
DON'T MODIFY ANYTHING IN THIS CELL
"""
import numpy as np

def show_generator_output(sess, n_images, input_z, out_channel_dim, image_mode):
    """
    Show example output for the generator
    :param sess: TensorFlow session
    :param n_images: Number of Images to display
    :param input_z: Input Z Tensor
    :param out_channel_dim: The number of channels in the output image
    :param image_mode: The mode to use for images ("RGB" or "L")
    """
    cmap = None if image_mode == 'RGB' else 'gray'
    z_dim = input_z.get_shape().as_list()[-1]
    example_z = np.random.uniform(-1, 1, size=[n_images, z_dim])

    samples = sess.run(
        generator(input_z, out_channel_dim, False),
        feed_dict={input_z: example_z})

    images_grid = helper.images_square_grid(samples, image_mode)
    pyplot.imshow(images_grid, cmap=cmap)
    pyplot.show()

Train

Implement train to build and train the GANs. Use the following functions you implemented:

  • model_inputs(image_width, image_height, image_channels, z_dim)
  • model_loss(input_real, input_z, out_channel_dim)
  • model_opt(d_loss, g_loss, learning_rate, beta1)

Use the show_generator_output to show generator output while you train. Running show_generator_output for every batch will drastically increase training time and increase the size of the notebook. It's recommended to print the generator output every 100 batches.


In [23]:
def train(epoch_count, batch_size, z_dim, learning_rate, beta1, get_batches, data_shape, data_image_mode):
    """
    Train the GAN
    :param epoch_count: Number of epochs
    :param batch_size: Batch Size
    :param z_dim: Z dimension
    :param learning_rate: Learning Rate
    :param beta1: The exponential decay rate for the 1st moment in the optimizer
    :param get_batches: Function to get batches
    :param data_shape: Shape of the data
    :param data_image_mode: The image mode to use for images ("RGB" or "L")
    """
    # TODO: Build Model
    #tf.reset_default_graph()
    input_real, input_z, lr = model_inputs(data_shape[1], data_shape[2], data_shape[3], z_dim)
    d_loss, g_loss = model_loss(input_real, input_z, data_shape[3])
    d_opt, g_opt = model_opt(d_loss, g_loss, lr, beta1)
    steps = 0
    losses = []
    
    with tf.Session() as sess:
        sess.run(tf.global_variables_initializer())
        for epoch_i in range(epoch_count):
            for batch_images in get_batches(batch_size):
                # TODO: Train Model
                steps += 1
                input_images = batch_images * 2
                batch_z = np.random.uniform(-1, 1, size=(batch_size, z_dim))
                _ = sess.run(d_opt, feed_dict={input_real: input_images, input_z: batch_z, lr: learning_rate})
                _ = sess.run(g_opt, feed_dict={input_real: input_images, input_z: batch_z, lr: learning_rate})
                
                if steps % 10 == 0:
                    # At the end of each epoch, get the losses and print them out
                    train_loss_d = d_loss.eval({input_z: batch_z, input_real: batch_images})
                    train_loss_g = g_loss.eval({input_z: batch_z})

                    print("Epoch {}/{}...".format(epoch_i+1, epoch_count),
                          "Discriminator Loss: {:.4f}...".format(train_loss_d),
                          "Generator Loss: {:.4f}".format(train_loss_g))
                    # Save losses to view after training
                    losses.append((train_loss_d, train_loss_g))

                if steps % 100 == 0:
                    show_generator_output(sess, 16, input_z, data_shape[3], data_image_mode)

MNIST

Test your GANs architecture on MNIST. After 2 epochs, the GANs should be able to generate images that look like handwritten digits. Make sure the loss of the generator is lower than the loss of the discriminator or close to 0.


In [26]:
batch_size = 128
z_dim = 100
learning_rate = 0.001
beta1 = 0.2


"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
epochs = 2

mnist_dataset = helper.Dataset('mnist', glob(os.path.join(data_dir, 'mnist/*.jpg')))
with tf.Graph().as_default():
    train(epochs, batch_size, z_dim, learning_rate, beta1, mnist_dataset.get_batches,
          mnist_dataset.shape, mnist_dataset.image_mode)


Epoch 1/2... Discriminator Loss: 0.5501... Generator Loss: 1.0955
Epoch 1/2... Discriminator Loss: 2.0636... Generator Loss: 2.4991
Epoch 1/2... Discriminator Loss: 1.9503... Generator Loss: 1.5536
Epoch 1/2... Discriminator Loss: 1.8898... Generator Loss: 1.1999
Epoch 1/2... Discriminator Loss: 1.9925... Generator Loss: 1.1119
Epoch 1/2... Discriminator Loss: 1.9281... Generator Loss: 1.2041
Epoch 1/2... Discriminator Loss: 1.8844... Generator Loss: 1.0837
Epoch 1/2... Discriminator Loss: 1.8296... Generator Loss: 1.0420
Epoch 1/2... Discriminator Loss: 1.8946... Generator Loss: 1.1775
Epoch 1/2... Discriminator Loss: 1.9489... Generator Loss: 1.1423
Epoch 1/2... Discriminator Loss: 1.8247... Generator Loss: 1.0983
Epoch 1/2... Discriminator Loss: 1.8328... Generator Loss: 1.1664
Epoch 1/2... Discriminator Loss: 1.8029... Generator Loss: 1.2434
Epoch 1/2... Discriminator Loss: 1.8151... Generator Loss: 1.1663
Epoch 1/2... Discriminator Loss: 1.7165... Generator Loss: 1.2688
Epoch 1/2... Discriminator Loss: 1.7821... Generator Loss: 1.2951
Epoch 1/2... Discriminator Loss: 1.7851... Generator Loss: 1.2305
Epoch 1/2... Discriminator Loss: 1.7575... Generator Loss: 1.3843
Epoch 1/2... Discriminator Loss: 1.8692... Generator Loss: 1.4199
Epoch 1/2... Discriminator Loss: 1.7211... Generator Loss: 1.3668
Epoch 1/2... Discriminator Loss: 1.7332... Generator Loss: 1.3532
Epoch 1/2... Discriminator Loss: 1.6637... Generator Loss: 1.2807
Epoch 1/2... Discriminator Loss: 1.7447... Generator Loss: 1.2744
Epoch 1/2... Discriminator Loss: 1.9256... Generator Loss: 1.7085
Epoch 1/2... Discriminator Loss: 1.7203... Generator Loss: 1.1665
Epoch 1/2... Discriminator Loss: 1.8837... Generator Loss: 1.2480
Epoch 1/2... Discriminator Loss: 1.9482... Generator Loss: 1.3485
Epoch 1/2... Discriminator Loss: 1.9274... Generator Loss: 1.3087
Epoch 1/2... Discriminator Loss: 1.7961... Generator Loss: 1.3195
Epoch 1/2... Discriminator Loss: 2.0205... Generator Loss: 1.2229
Epoch 1/2... Discriminator Loss: 2.0166... Generator Loss: 1.1560
Epoch 1/2... Discriminator Loss: 2.2032... Generator Loss: 1.6008
Epoch 1/2... Discriminator Loss: 1.8945... Generator Loss: 0.9628
Epoch 1/2... Discriminator Loss: 2.3716... Generator Loss: 1.4179
Epoch 1/2... Discriminator Loss: 1.9527... Generator Loss: 0.9770
Epoch 1/2... Discriminator Loss: 2.1019... Generator Loss: 1.0604
Epoch 1/2... Discriminator Loss: 2.3169... Generator Loss: 1.2962
Epoch 1/2... Discriminator Loss: 2.3548... Generator Loss: 1.2783
Epoch 1/2... Discriminator Loss: 2.0111... Generator Loss: 0.9949
Epoch 1/2... Discriminator Loss: 2.5087... Generator Loss: 1.3449
Epoch 1/2... Discriminator Loss: 2.0250... Generator Loss: 0.7663
Epoch 1/2... Discriminator Loss: 2.1095... Generator Loss: 1.1925
Epoch 1/2... Discriminator Loss: 1.8773... Generator Loss: 0.9018
Epoch 1/2... Discriminator Loss: 1.9689... Generator Loss: 0.5697
Epoch 1/2... Discriminator Loss: 2.0595... Generator Loss: 0.3694
Epoch 1/2... Discriminator Loss: 1.9468... Generator Loss: 0.4720
Epoch 2/2... Discriminator Loss: 1.9814... Generator Loss: 0.4590
Epoch 2/2... Discriminator Loss: 2.1820... Generator Loss: 0.1703
Epoch 2/2... Discriminator Loss: 1.6655... Generator Loss: 0.5167
Epoch 2/2... Discriminator Loss: 1.7753... Generator Loss: 0.6051
Epoch 2/2... Discriminator Loss: 1.8077... Generator Loss: 0.6163
Epoch 2/2... Discriminator Loss: 2.1569... Generator Loss: 1.5517
Epoch 2/2... Discriminator Loss: 2.2276... Generator Loss: 1.4339
Epoch 2/2... Discriminator Loss: 1.9663... Generator Loss: 0.9858
Epoch 2/2... Discriminator Loss: 2.0611... Generator Loss: 0.9865
Epoch 2/2... Discriminator Loss: 1.8167... Generator Loss: 1.2023
Epoch 2/2... Discriminator Loss: 1.8374... Generator Loss: 0.8847
Epoch 2/2... Discriminator Loss: 2.1287... Generator Loss: 1.4171
Epoch 2/2... Discriminator Loss: 1.9540... Generator Loss: 0.9747
Epoch 2/2... Discriminator Loss: 2.1535... Generator Loss: 1.2259
Epoch 2/2... Discriminator Loss: 1.9283... Generator Loss: 0.9180
Epoch 2/2... Discriminator Loss: 2.0346... Generator Loss: 1.2124
Epoch 2/2... Discriminator Loss: 1.8735... Generator Loss: 0.9524
Epoch 2/2... Discriminator Loss: 2.1698... Generator Loss: 1.4006
Epoch 2/2... Discriminator Loss: 1.7820... Generator Loss: 1.2177
Epoch 2/2... Discriminator Loss: 1.8373... Generator Loss: 0.9188
Epoch 2/2... Discriminator Loss: 1.7517... Generator Loss: 1.1078
Epoch 2/2... Discriminator Loss: 2.0614... Generator Loss: 1.2939
Epoch 2/2... Discriminator Loss: 1.7665... Generator Loss: 0.8487
Epoch 2/2... Discriminator Loss: 1.9842... Generator Loss: 1.3992
Epoch 2/2... Discriminator Loss: 2.0830... Generator Loss: 0.9199
Epoch 2/2... Discriminator Loss: 1.7522... Generator Loss: 1.1512
Epoch 2/2... Discriminator Loss: 1.8562... Generator Loss: 1.0101
Epoch 2/2... Discriminator Loss: 1.9313... Generator Loss: 1.0763
Epoch 2/2... Discriminator Loss: 1.6101... Generator Loss: 1.0841
Epoch 2/2... Discriminator Loss: 2.0363... Generator Loss: 1.1734
Epoch 2/2... Discriminator Loss: 2.0439... Generator Loss: 2.0002
Epoch 2/2... Discriminator Loss: 1.5505... Generator Loss: 0.7426
Epoch 2/2... Discriminator Loss: 1.7599... Generator Loss: 0.5518
Epoch 2/2... Discriminator Loss: 1.7599... Generator Loss: 0.3886
Epoch 2/2... Discriminator Loss: 1.8401... Generator Loss: 0.4287
Epoch 2/2... Discriminator Loss: 1.7825... Generator Loss: 0.6039
Epoch 2/2... Discriminator Loss: 2.2876... Generator Loss: 1.3271
Epoch 2/2... Discriminator Loss: 1.6512... Generator Loss: 0.8951
Epoch 2/2... Discriminator Loss: 1.9378... Generator Loss: 1.2164
Epoch 2/2... Discriminator Loss: 1.7424... Generator Loss: 1.0440
Epoch 2/2... Discriminator Loss: 1.6855... Generator Loss: 1.0062
Epoch 2/2... Discriminator Loss: 2.1020... Generator Loss: 0.9701
Epoch 2/2... Discriminator Loss: 2.0540... Generator Loss: 1.4258
Epoch 2/2... Discriminator Loss: 1.5647... Generator Loss: 1.1832
Epoch 2/2... Discriminator Loss: 1.8852... Generator Loss: 1.1332
Epoch 2/2... Discriminator Loss: 1.8854... Generator Loss: 1.1210
Epoch 2/2... Discriminator Loss: 1.6441... Generator Loss: 1.2885

CelebA

Run your GANs on CelebA. It will take around 20 minutes on the average GPU to run one epoch. You can run the whole epoch or stop when it starts to generate realistic faces.


In [27]:
batch_size = 200
z_dim = 17
learning_rate = 0.01
beta1 = 0.2


"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
epochs = 1

celeba_dataset = helper.Dataset('celeba', glob(os.path.join(data_dir, 'img_align_celeba/*.jpg')))
with tf.Graph().as_default():
    train(epochs, batch_size, z_dim, learning_rate, beta1, celeba_dataset.get_batches,
          celeba_dataset.shape, celeba_dataset.image_mode)


Epoch 1/1... Discriminator Loss: 15.8781... Generator Loss: 0.0004
Epoch 1/1... Discriminator Loss: 5.2131... Generator Loss: 0.2525
Epoch 1/1... Discriminator Loss: 2.5925... Generator Loss: 0.2104
Epoch 1/1... Discriminator Loss: 2.8271... Generator Loss: 0.2144
Epoch 1/1... Discriminator Loss: 2.5599... Generator Loss: 0.1603
Epoch 1/1... Discriminator Loss: 1.8851... Generator Loss: 0.2945
Epoch 1/1... Discriminator Loss: 2.7346... Generator Loss: 0.1174
Epoch 1/1... Discriminator Loss: 1.6993... Generator Loss: 0.4745
Epoch 1/1... Discriminator Loss: 1.1342... Generator Loss: 1.6393
Epoch 1/1... Discriminator Loss: 0.7607... Generator Loss: 1.4775
Epoch 1/1... Discriminator Loss: 1.0406... Generator Loss: 0.8060
Epoch 1/1... Discriminator Loss: 0.5042... Generator Loss: 2.1446
Epoch 1/1... Discriminator Loss: 0.0751... Generator Loss: 3.4883
Epoch 1/1... Discriminator Loss: 1.5894... Generator Loss: 2.1640
Epoch 1/1... Discriminator Loss: 0.6607... Generator Loss: 0.9602
Epoch 1/1... Discriminator Loss: 0.0335... Generator Loss: 3.7602
Epoch 1/1... Discriminator Loss: 0.6618... Generator Loss: 1.2192
Epoch 1/1... Discriminator Loss: 0.0007... Generator Loss: 9.3409
Epoch 1/1... Discriminator Loss: 0.6556... Generator Loss: 1.3853
Epoch 1/1... Discriminator Loss: 1.0586... Generator Loss: 0.5113
Epoch 1/1... Discriminator Loss: 1.0164... Generator Loss: 0.6627
Epoch 1/1... Discriminator Loss: 0.9952... Generator Loss: 0.7487
Epoch 1/1... Discriminator Loss: 0.9276... Generator Loss: 0.6063
Epoch 1/1... Discriminator Loss: 1.6753... Generator Loss: 0.2637
Epoch 1/1... Discriminator Loss: 0.6394... Generator Loss: 2.5556
Epoch 1/1... Discriminator Loss: 0.5304... Generator Loss: 1.2186
Epoch 1/1... Discriminator Loss: 0.3366... Generator Loss: 1.9079
Epoch 1/1... Discriminator Loss: 0.1191... Generator Loss: 2.5133
Epoch 1/1... Discriminator Loss: 0.5085... Generator Loss: 1.9275
Epoch 1/1... Discriminator Loss: 0.5237... Generator Loss: 1.1771
Epoch 1/1... Discriminator Loss: 1.1746... Generator Loss: 0.4840
Epoch 1/1... Discriminator Loss: 0.7290... Generator Loss: 0.8807
Epoch 1/1... Discriminator Loss: 0.5207... Generator Loss: 1.4927
Epoch 1/1... Discriminator Loss: 0.6610... Generator Loss: 0.9179
Epoch 1/1... Discriminator Loss: 0.5579... Generator Loss: 2.1052
Epoch 1/1... Discriminator Loss: 1.2074... Generator Loss: 0.3895
Epoch 1/1... Discriminator Loss: 1.2910... Generator Loss: 0.3705
Epoch 1/1... Discriminator Loss: 0.6914... Generator Loss: 1.1874
Epoch 1/1... Discriminator Loss: 0.8299... Generator Loss: 1.3150
Epoch 1/1... Discriminator Loss: 0.8860... Generator Loss: 1.5498
Epoch 1/1... Discriminator Loss: 0.8753... Generator Loss: 1.0748
Epoch 1/1... Discriminator Loss: 0.7967... Generator Loss: 0.9682
Epoch 1/1... Discriminator Loss: 1.0008... Generator Loss: 0.8876
Epoch 1/1... Discriminator Loss: 1.1515... Generator Loss: 0.8005
Epoch 1/1... Discriminator Loss: 1.4467... Generator Loss: 0.7709
Epoch 1/1... Discriminator Loss: 1.2006... Generator Loss: 0.7347
Epoch 1/1... Discriminator Loss: 1.5135... Generator Loss: 0.5013
Epoch 1/1... Discriminator Loss: 1.2796... Generator Loss: 0.6909
Epoch 1/1... Discriminator Loss: 1.2435... Generator Loss: 0.6492
Epoch 1/1... Discriminator Loss: 1.3132... Generator Loss: 0.5948
Epoch 1/1... Discriminator Loss: 1.4603... Generator Loss: 0.9010
Epoch 1/1... Discriminator Loss: 1.3432... Generator Loss: 0.7832
Epoch 1/1... Discriminator Loss: 1.3715... Generator Loss: 1.0661
Epoch 1/1... Discriminator Loss: 1.2992... Generator Loss: 0.9941
Epoch 1/1... Discriminator Loss: 1.4459... Generator Loss: 0.6866
Epoch 1/1... Discriminator Loss: 1.4117... Generator Loss: 1.2173
Epoch 1/1... Discriminator Loss: 1.2444... Generator Loss: 0.8384
Epoch 1/1... Discriminator Loss: 1.3744... Generator Loss: 0.5308
Epoch 1/1... Discriminator Loss: 1.4757... Generator Loss: 0.6452
Epoch 1/1... Discriminator Loss: 1.3652... Generator Loss: 0.8001
Epoch 1/1... Discriminator Loss: 1.3101... Generator Loss: 0.8393
Epoch 1/1... Discriminator Loss: 1.4204... Generator Loss: 0.9730
Epoch 1/1... Discriminator Loss: 1.3625... Generator Loss: 0.8009
Epoch 1/1... Discriminator Loss: 1.5416... Generator Loss: 0.3859
Epoch 1/1... Discriminator Loss: 1.3535... Generator Loss: 0.8135
Epoch 1/1... Discriminator Loss: 1.4125... Generator Loss: 0.8632
Epoch 1/1... Discriminator Loss: 1.3699... Generator Loss: 0.8363
Epoch 1/1... Discriminator Loss: 1.2239... Generator Loss: 0.8266
Epoch 1/1... Discriminator Loss: 1.3871... Generator Loss: 1.0017
Epoch 1/1... Discriminator Loss: 1.2702... Generator Loss: 0.8561
Epoch 1/1... Discriminator Loss: 1.4616... Generator Loss: 0.9371
Epoch 1/1... Discriminator Loss: 1.2170... Generator Loss: 0.9318
Epoch 1/1... Discriminator Loss: 1.4488... Generator Loss: 1.1449
Epoch 1/1... Discriminator Loss: 1.3100... Generator Loss: 0.8840
Epoch 1/1... Discriminator Loss: 1.4052... Generator Loss: 1.0205
Epoch 1/1... Discriminator Loss: 1.4705... Generator Loss: 0.9445
Epoch 1/1... Discriminator Loss: 1.3739... Generator Loss: 0.6963
Epoch 1/1... Discriminator Loss: 1.7523... Generator Loss: 0.2889
Epoch 1/1... Discriminator Loss: 1.3323... Generator Loss: 0.7360
Epoch 1/1... Discriminator Loss: 1.3875... Generator Loss: 0.8567
Epoch 1/1... Discriminator Loss: 1.3471... Generator Loss: 0.8317
Epoch 1/1... Discriminator Loss: 1.5007... Generator Loss: 0.9751
Epoch 1/1... Discriminator Loss: 1.5346... Generator Loss: 0.5070
Epoch 1/1... Discriminator Loss: 1.3395... Generator Loss: 0.6121
Epoch 1/1... Discriminator Loss: 1.4131... Generator Loss: 0.8060
Epoch 1/1... Discriminator Loss: 1.3176... Generator Loss: 0.7454
Epoch 1/1... Discriminator Loss: 1.4362... Generator Loss: 0.8910
Epoch 1/1... Discriminator Loss: 1.2131... Generator Loss: 0.9050
Epoch 1/1... Discriminator Loss: 1.3728... Generator Loss: 0.8653
Epoch 1/1... Discriminator Loss: 1.4460... Generator Loss: 0.4910
Epoch 1/1... Discriminator Loss: 1.3680... Generator Loss: 0.5232
Epoch 1/1... Discriminator Loss: 1.3923... Generator Loss: 0.7705
Epoch 1/1... Discriminator Loss: 1.5361... Generator Loss: 0.7061
Epoch 1/1... Discriminator Loss: 1.3619... Generator Loss: 0.6183
Epoch 1/1... Discriminator Loss: 1.7050... Generator Loss: 1.2259
Epoch 1/1... Discriminator Loss: 1.2772... Generator Loss: 0.8859
Epoch 1/1... Discriminator Loss: 1.3737... Generator Loss: 0.8716
Epoch 1/1... Discriminator Loss: 1.3289... Generator Loss: 0.8924
Epoch 1/1... Discriminator Loss: 1.4302... Generator Loss: 1.0060
Epoch 1/1... Discriminator Loss: 1.3604... Generator Loss: 0.7848
Epoch 1/1... Discriminator Loss: 1.3353... Generator Loss: 0.6362

Submitting This Project

When submitting this project, make sure to run all the cells before saving the notebook. Save the notebook file as "dlnd_face_generation.ipynb" and save it as a HTML file under "File" -> "Download as". Include the "helper.py" and "problem_unittests.py" files in your submission.