In [ ]:
import torch
import torch.nn as nn
import torchvision.datasets as dsets
import torchvision.transforms as transforms
from torch.autograd import Variable
In [ ]:
# Hyper Parameters,定义训练神经网络的超参数
input_size = 784
hidden_size = 500
num_classes = 10
num_epochs = 5
batch_size = 100
learning_rate = 0.001
In [ ]:
# MNIST Dataset
train_dataset = dsets.MNIST(root='./data',
train=True,
transform=transforms.ToTensor(),
download=True)
test_dataset = dsets.MNIST(root='./data',
train=False,
transform=transforms.ToTensor())
# Data Loader (Input Pipeline)
train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
batch_size=batch_size,
shuffle=True)
test_loader = torch.utils.data.DataLoader(dataset=test_dataset,
batch_size=batch_size,
shuffle=False)
In [ ]:
# Neural Network Model (1 hidden layer),定义一个只有一层隐含层的简单神经网络
class Net(nn.Module):
def __init__(self, input_size, hidden_size, num_classes):
super(Net, self).__init__()
self.fc1 = nn.Linear(input_size, hidden_size)
self.relu = nn.ReLU()
self.fc2 = nn.Linear(hidden_size, num_classes)
def forward(self, x):
out = self.fc1(x)
out = self.relu(out)
out = self.fc2(out)
return out
net = Net(input_size, hidden_size, num_classes) #实例化上文定义的神经网络
# Loss and Optimizer,定义损失函数和优化方式,此处分别选择softmax函数 (即求交叉熵),和Adam优化器 (也可选择SGD优化器)
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(net.parameters(), lr=learning_rate)
In [ ]:
# Train the Model,训练神经网络模型
for epoch in range(num_epochs):
for i, (images, labels) in enumerate(train_loader):
# Convert torch tensor to Variable
images = Variable(images.view(-1, 28*28))
labels = Variable(labels)
# Forward + Backward + Optimize
# 一步优化步骤里包括:1)根据网络权值前向转播 2)根据损失求导和链式法则反向传播 3)根据梯度更新网络权值
optimizer.zero_grad() # zero the gradient buffer
outputs = net(images)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
if (i+1) % 100 == 0:
print ('Epoch [%d/%d], Step [%d/%d], Loss: %.4f'
%(epoch+1, num_epochs, i+1, len(train_dataset)//batch_size, loss.data[0]))
In [ ]:
# Test the Model,测试训练好的模型
correct = 0
total = 0
for images, labels in test_loader:
images = Variable(images.view(-1, 28*28))
outputs = net(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum()
print('Accuracy of the network on the 10000 test images: %d %%' % (100 * correct / total))
# Save the Model,存储训练好的模型
torch.save(net.state_dict(), 'model.pkl')