Machine Learning Prognostics for Turbofan Engine Degradation Dataset

Information about the problem is at http://ti.arc.nasa.gov/tech/dash/pcoe/prognostic-data-repository/publications/#turbofan and original data is at http://ti.arc.nasa.gov/tech/dash/pcoe/prognostic-data-repository/#turbofan

The data was originally generated using the Commercial Modular Aero-Propulsion System Simulations (C-MAPPS) system.

The approach used in the turbofan engine degradation dataset was then used in the PHM08 challenge. Information about other research on the C-MAPSS data is available at https://www.phmsociety.org/sites/phmsociety.org/files/phm_submission/2014/phmc_14_063.pdf


In [1]:
import sys
import h2o
from h2o.estimators.glm import H2OGeneralizedLinearEstimator
from h2o.estimators.gbm import H2OGradientBoostingEstimator
from h2o.utils.shared_utils import _locate

import numpy as np
import pandas as pd
import seaborn as sns
import pykalman as pyk


sns.set()
doGridSearch = True
doKalmanSmoothing = False #unrelated to h2o, set true for demo

Preprocessing


In [2]:
# Input files don't have column names
dependent_vars = ['RemainingUsefulLife']
index_columns_names =  ["UnitNumber","Cycle"]
operational_settings_columns_names = ["OpSet"+str(i) for i in range(1,4)]
sensor_measure_columns_names =["SensorMeasure"+str(i) for i in range(1,22)]
input_file_column_names = index_columns_names + operational_settings_columns_names + sensor_measure_columns_names

# And we are going to add these columns
kalman_smoothed_mean_columns_names =["SensorMeasureKalmanMean"+str(i) for i in range(1,22)]

Read in the raw files


In [3]:
train = pd.read_csv("http://h2o-public-test-data.s3.amazonaws.com/bigdata/laptop/CMAPSSData/train_FD001.txt", sep=r"\s*", header=None,
                   names=input_file_column_names, engine='python')
test  = pd.read_csv("http://h2o-public-test-data.s3.amazonaws.com/bigdata/laptop/CMAPSSData/test_FD001.txt",  sep=r"\s*", header=None,
                   names=input_file_column_names, engine='python')
test_rul = pd.read_csv("http://h2o-public-test-data.s3.amazonaws.com/bigdata/laptop/CMAPSSData/RUL_FD001.txt", header=None, names=['RemainingUsefulLife'])
test_rul.index += 1  # set the index to be the unit number in the test data set
test_rul.index.name = "UnitNumber"

Calculate Remaining Useful Life in T-minus notation for the training data

This puts all data on the same basis for supervised training


In [4]:
# Calculate the remaining useful life for each training sample based on last measurement being zero remaining
grouped_train = train.groupby('UnitNumber', as_index=False)
useful_life_train = grouped_train.agg({'Cycle' : np.max })
useful_life_train.rename(columns={'Cycle': 'UsefulLife'}, inplace=True)
train_wfeatures = pd.merge(train, useful_life_train, on="UnitNumber")
train_wfeatures["RemainingUsefulLife"] = -(train_wfeatures.UsefulLife - train_wfeatures.Cycle)
train_wfeatures.drop('UsefulLife', axis=1, inplace=True)

grouped_test = test.groupby('UnitNumber', as_index=False)
useful_life_test = grouped_test.agg({'Cycle' : np.max })
useful_life_test.rename(columns={'Cycle': 'UsefulLife'}, inplace=True)
test_wfeatures = pd.merge(test, useful_life_test, on="UnitNumber")
test_wfeatures["RemainingUsefulLife"] = -(test_wfeatures.UsefulLife - test_wfeatures.Cycle)
test_wfeatures.drop('UsefulLife', axis=1, inplace=True)

Exploratory Data Analysis

Look at how the sensor measures evolve over time (first column) as well as how they relate to each other for a subset of the units.

These features were the top 3 and bottom 2 most important sensor features as discovered by H2O's GBM, later in the notebook.


In [5]:
sns.set_context("notebook", font_scale=1.5)
p = sns.pairplot(train_wfeatures.query('UnitNumber < 10'),
                 vars=["RemainingUsefulLife", "SensorMeasure4", "SensorMeasure3",
                       "SensorMeasure9", "SensorMeasure8", "SensorMeasure13"], size=10,
                 hue="UnitNumber", palette=sns.color_palette("husl", 9));
sns.plt.show()

Signal processing using Kalman smoothing filter

Kalman parameters were determined using EM algorithm and then those parameters are used for smoothing the signal data.

This is applied repeatedly to each Unit, in both the training and test set.


In [6]:
kalman_smoothed_mean_columns_names =["SensorMeasureKalmanMean"+str(i) for i in range(1,22)]

def calcSmooth(measures):
    kf = pyk.KalmanFilter(initial_state_mean=measures[0], n_dim_obs=measures.shape[1])
    (smoothed_state_means, smoothed_state_covariances) = kf.em(measures).smooth(measures)
    return smoothed_state_means

def filterEachUnit(df):
    dfout = df.copy()

    for newcol in kalman_smoothed_mean_columns_names:
        dfout[newcol] = np.nan

    for unit in dfout.UnitNumber.unique():
        sys.stdout.write('\rProcessing Unit: %d' % unit)
        sys.stdout.flush()
        unitmeasures = dfout[dfout.UnitNumber == unit][sensor_measure_columns_names]
        smoothed_state_means = calcSmooth( np.asarray( unitmeasures ) )
        dfout.loc[dfout.UnitNumber == unit, kalman_smoothed_mean_columns_names] = smoothed_state_means
        sys.stdout.write('\rProcessing Unit: %d' % unit)
        sys.stdout.flush()
    sys.stdout.write('\rFinished\n')
    sys.stdout.flush()

    return dfout

Output the results to files

Helps so preprocessing only has to be done once.


In [7]:
# Get picky about the order of output columns
test_output_cols = index_columns_names + operational_settings_columns_names + sensor_measure_columns_names + \
                   kalman_smoothed_mean_columns_names
train_output_cols = test_output_cols + dependent_vars

if doKalmanSmoothing:
    train_wkalman = filterEachUnit(train_wfeatures)
    test_wkalman = filterEachUnit(test_wfeatures)

    train_output = train_wkalman[train_output_cols]
    test_output = test_wkalman[test_output_cols]

In [8]:
# Output the files, so we don't have to do the preprocessing again.
if doKalmanSmoothing:
    train_output.to_csv("train_FD001_preprocessed.csv", index=False)
    test_output.to_csv("test_FD001_preprocessed.csv", index=False)
    test_rul.to_csv("rul_FD001_preprocessed.csv", index=True)

Modeling

Startup H2O


In [9]:
h2o.init()


H2O cluster uptime: 6 hours 33 minutes 13 seconds 411 milliseconds
H2O cluster version: 3.5.0.99999
H2O cluster name: Kevin
H2O cluster total nodes: 1
H2O cluster total memory: 3.54 GB
H2O cluster total cores: 8
H2O cluster allowed cores: 8
H2O cluster healthy: True
H2O Connection ip: 127.0.0.1
H2O Connection port: 54321

Load training and final test data into H2O


In [10]:
#Pull Kalman-smoothed data if generated locally, or source from AWS
if doKalmanSmoothing:
    train_hex = h2o.import_file(_locate("train_FD001_preprocessed.csv"))
    test_hex = h2o.import_file(_locate("test_FD001_preprocessed.csv"))
else:
    train_hex = h2o.import_file("http://h2o-public-test-data.s3.amazonaws.com/bigdata/laptop/CMAPSSData/train_FD001_preprocessed.csv")
    test_hex = h2o.import_file("http://h2o-public-test-data.s3.amazonaws.com/bigdata/laptop/CMAPSSData/test_FD001_preprocessed.csv")


Parse Progress: [##################################################] 100%
Imported http://h2o-public-test-data.s3.amazonaws.com/bigdata/laptop/CMAPSSData/train_FD001_preprocessed.csv. Parsed 20,631 rows and 48 cols

Parse Progress: [##################################################] 100%
Imported http://h2o-public-test-data.s3.amazonaws.com/bigdata/laptop/CMAPSSData/test_FD001_preprocessed.csv. Parsed 13,096 rows and 47 cols

Setup independent and dependent features

Use the operational settings and Kalman smoothed mean states as the independent features

Setup a fold column to great cross validation models from 90 units and cross validating on 10 units. This creates a 10-fold cross validation. The cross validation models are then used to create an ensemble model for predictions


In [11]:
xCols= operational_settings_columns_names + kalman_smoothed_mean_columns_names
yCol = dependent_vars

foldCol = "UnitNumberMod10"
train_hex[foldCol] = train_hex["UnitNumber"] % 10

Train a series of GLM Models using Grid Search over $\alpha$ and $\lambda$


In [12]:
def trainGLM(x, y, fold_column, training_frame, alpha=0.5, penalty=1e-5):
    model = H2OGeneralizedLinearEstimator(family = "gaussian",alpha = [alpha], Lambda = [penalty])
    model.train(x=x, y=y, training_frame=training_frame, fold_column=fold_column)
    return model

def gridSearchGLM(x, y, fold_column, training_frame, alphas = [0,0.5,1], penalties=np.logspace(-3,0,num=4)):
    results = []
    for alpha in alphas:
        for penalty in penalties:
            results.append( trainGLM(x, y, fold_column, training_frame, alpha, penalty) )
    return results

if doGridSearch:
    glmModels = gridSearchGLM(xCols, yCol, foldCol, train_hex)
else:
    # this is used to speed up the demonstration by just building the single model previously found
    glmModels = [ trainGLM(xCols, yCol, foldCol, train_hex, alpha=1, penalty=0.01 )]


glm Model Build Progress: [##################################################] 100%

glm Model Build Progress: [##################################################] 100%

glm Model Build Progress: [##################################################] 100%

glm Model Build Progress: [##################################################] 100%

glm Model Build Progress: [##################################################] 100%

glm Model Build Progress: [##################################################] 100%

glm Model Build Progress: [##################################################] 100%

glm Model Build Progress: [##################################################] 100%

glm Model Build Progress: [##################################################] 100%

glm Model Build Progress: [##################################################] 100%

glm Model Build Progress: [##################################################] 100%

glm Model Build Progress: [##################################################] 100%

Extract the 'best' model

Uses model with lowest MSE on the cross validation data.

This is a reasonable substitute for using the final scoring method.


In [13]:
def extractBestModel(models):
    bestMse = models[0].mse(xval=True)
    result = models[0]
    for model in models:
        if model.mse(xval=True) < bestMse:
            bestMse = model.mse(xval=True)
            result = model
    return result

bestModel = extractBestModel(glmModels)
bestModel


Model Details
=============
H2OGeneralizedLinearEstimator :  Generalized Linear Model
Model Key:  GLM_model_python_1445965974785_270

GLM Model: summary

family link regularization number_of_predictors_total number_of_active_predictors number_of_iterations training_frame
gaussian identity Ridge ( lambda = 0.01 ) 17 18 1 Key_Frame__http___h2o_public_test_data_s3_amazonaws_com_bigdata_laptop_CMAPSSData_train_FD001_preprocessed.hex

ModelMetricsRegressionGLM: glm
** Reported on train data. **

MSE: 1907.65887465
R^2: 0.597910247255
Mean Residual Deviance: 1907.65887465
Null degrees of freedom: 20630
Residual degrees of freedom: 20613
Null deviance: 97880908.3648
Residual deviance: 39356910.2429
AIC: 214425.224563

ModelMetricsRegressionGLM: glm
** Reported on cross-validation data. **

MSE: 1977.53644453
R^2: 0.583181694279
Mean Residual Deviance: 1977.53644453
Null degrees of freedom: 20630
Residual degrees of freedom: 20613
Null deviance: 98171005.0908
Residual deviance: 40798554.387
AIC: 215167.426437

Scoring History:
timestamp duration iteration log_likelihood objective
2015-10-27 16:46:38 0.000 sec 0 48955702.8 2372.9
Out[13]:

Build a series of GBM models using grid search for hyper-parameters

Extract the 'best' model using the same approach as with GLM.


In [14]:
def trainGBM(x, y, fold_column, training_frame, learning_rate=0.1, ntrees=50, max_depth=5):
    model = H2OGradientBoostingEstimator(distribution = "gaussian",
                   learn_rate=learning_rate, ntrees=ntrees, max_depth=max_depth)
    model.train(x=x, y=y, training_frame=training_frame, fold_column=fold_column)
    return model

def gridSearchGBM(x, y, fold_column, training_frame, learning_rates = [0.1,0.03,0.01], ntrees=[10,30,100,300], max_depth=[1,3,5]):
    results = []
    for learning_rate in learning_rates:
        for ntree in ntrees:
            for depth in max_depth:
                print "GBM: {learning rate: "+str(learning_rate)+"},{ntrees: "+str(ntree)+"},{max_depth: "+str(depth)+"}"
                results.append( trainGBM(x, y, fold_column, training_frame, learning_rate=learning_rate, ntrees=ntree, max_depth=depth) )
    return results

In [15]:
if doGridSearch:
    #bmModels = gridSearchGBM(xCols, yCol, foldCol, train_hex,\
    #                        learning_rates=[0.03,0.01,0.003], ntrees=[100,300,500], max_depth=[1,3,5])

    #run the below line for fast demo
    gbmModels = gridSearchGBM(xCols, yCol, foldCol, train_hex, learning_rates=[0.03,0.01], ntrees=[50,200], max_depth=[2,5])
else:
    gbmModels = [trainGBM(xCols, yCol, foldCol, train_hex, \
                        ntrees=300, max_depth=5)]


GBM: {learning rate: 0.03},{ntrees: 50},{max_depth: 2}

gbm Model Build Progress: [##################################################] 100%
GBM: {learning rate: 0.03},{ntrees: 50},{max_depth: 5}

gbm Model Build Progress: [##################################################] 100%
GBM: {learning rate: 0.03},{ntrees: 200},{max_depth: 2}

gbm Model Build Progress: [##################################################] 100%
GBM: {learning rate: 0.03},{ntrees: 200},{max_depth: 5}

gbm Model Build Progress: [##################################################] 100%
GBM: {learning rate: 0.01},{ntrees: 50},{max_depth: 2}

gbm Model Build Progress: [##################################################] 100%
GBM: {learning rate: 0.01},{ntrees: 50},{max_depth: 5}

gbm Model Build Progress: [##################################################] 100%
GBM: {learning rate: 0.01},{ntrees: 200},{max_depth: 2}

gbm Model Build Progress: [##################################################] 100%
GBM: {learning rate: 0.01},{ntrees: 200},{max_depth: 5}

gbm Model Build Progress: [##################################################] 100%

In [16]:
bestGbmModel = extractBestModel(gbmModels)

Best model had depth 5, learning rate 0.01, and 300 trees


In [17]:
bestGbmModel.params


Out[17]:
{u'balance_classes': {'actual': False, 'default': False},
 u'build_tree_one_node': {'actual': False, 'default': False},
 u'checkpoint': {'actual': None, 'default': None},
 u'class_sampling_factors': {'actual': None, 'default': None},
 u'col_sample_rate': {'actual': 1.0, 'default': 1.0},
 u'distribution': {'actual': u'gaussian', 'default': u'AUTO'},
 u'fold_assignment': {'actual': u'AUTO', 'default': u'AUTO'},
 u'fold_column': {'actual': {u'__meta': {u'schema_name': u'ColSpecifierV3',
    u'schema_type': u'VecSpecifier',
    u'schema_version': 3},
   u'column_name': u'UnitNumberMod10',
   u'is_member_of_frames': None},
  'default': None},
 u'ignore_const_cols': {'actual': True, 'default': True},
 u'ignored_columns': {'actual': [u'SensorMeasure21',
   u'SensorMeasure20',
   u'SensorMeasure8',
   u'SensorMeasure9',
   u'SensorMeasure4',
   u'SensorMeasure5',
   u'SensorMeasure6',
   u'SensorMeasure7',
   u'SensorMeasure1',
   u'SensorMeasure2',
   u'SensorMeasure3',
   u'SensorMeasure16',
   u'SensorMeasure17',
   u'SensorMeasure14',
   u'SensorMeasure15',
   u'SensorMeasure12',
   u'SensorMeasure13',
   u'SensorMeasure10',
   u'SensorMeasure11',
   u'SensorMeasure18',
   u'SensorMeasure19',
   u'UnitNumber',
   u'Cycle'],
  'default': None},
 u'keep_cross_validation_predictions': {'actual': False, 'default': False},
 u'learn_rate': {'actual': 0.03, 'default': 0.1},
 u'max_after_balance_size': {'actual': 5.0, 'default': 5.0},
 u'max_confusion_matrix_size': {'actual': 20, 'default': 20},
 u'max_depth': {'actual': 5, 'default': 5},
 u'max_hit_ratio_k': {'actual': 10, 'default': 10},
 u'min_rows': {'actual': 10.0, 'default': 10.0},
 u'model_id': {'actual': None, 'default': None},
 u'nbins': {'actual': 20, 'default': 20},
 u'nbins_cats': {'actual': 1024, 'default': 1024},
 u'nbins_top_level': {'actual': 1024, 'default': 1024},
 u'nfolds': {'actual': 0, 'default': 0},
 u'ntrees': {'actual': 200, 'default': 50},
 u'offset_column': {'actual': None, 'default': None},
 u'r2_stopping': {'actual': 0.999999, 'default': 0.999999},
 u'response_column': {'actual': {u'__meta': {u'schema_name': u'ColSpecifierV3',
    u'schema_type': u'VecSpecifier',
    u'schema_version': 3},
   u'column_name': u'RemainingUsefulLife',
   u'is_member_of_frames': None},
  'default': None},
 u'sample_rate': {'actual': 1.0, 'default': 1.0},
 u'score_each_iteration': {'actual': False, 'default': False},
 u'seed': {'actual': 676607941053184637L, 'default': -4954682849530948794L},
 u'training_frame': {'actual': {u'URL': u'/3/Frames/Key_Frame__http___h2o_public_test_data_s3_amazonaws_com_bigdata_laptop_CMAPSSData_train_FD001_preprocessed.hex',
   u'__meta': {u'schema_name': u'FrameKeyV3',
    u'schema_type': u'Key<Frame>',
    u'schema_version': 3},
   u'name': u'Key_Frame__http___h2o_public_test_data_s3_amazonaws_com_bigdata_laptop_CMAPSSData_train_FD001_preprocessed.hex',
   u'type': u'Key<Frame>'},
  'default': None},
 u'tweedie_power': {'actual': 1.5, 'default': 1.5},
 u'validation_frame': {'actual': None, 'default': None},
 u'weights_column': {'actual': None, 'default': None}}

Best GBM Model reported MSE on cross validation data as 1687, an improvement from GLM of 1954.


In [18]:
bestGbmModel


Model Details
=============
H2OGradientBoostingEstimator :  Gradient Boosting Machine
Model Key:  GBM_model_python_1445965974785_298

Model Summary:
number_of_trees model_size_in_bytes min_depth max_depth mean_depth min_leaves max_leaves mean_leaves
200.0 79128.0 5.0 5.0 5.0 13.0 32.0 28.575

ModelMetricsRegression: gbm
** Reported on train data. **

MSE: 1095.13677598
R^2: 0.769170850551
Mean Residual Deviance: 1095.13677598

ModelMetricsRegression: gbm
** Reported on cross-validation data. **

MSE: 1694.88676263
R^2: 0.64275761858
Mean Residual Deviance: 1694.88676263

Scoring History:
timestamp duration number_of_trees training_MSE training_deviance
2015-10-27 16:49:41 1 min 15.434 sec 1.0 4559.7 4559.7
2015-10-27 16:49:41 1 min 15.465 sec 2.0 4385.4 4385.4
2015-10-27 16:49:41 1 min 15.491 sec 3.0 4222.0 4222.0
2015-10-27 16:49:41 1 min 15.517 sec 4.0 4068.1 4068.1
2015-10-27 16:49:41 1 min 15.543 sec 5.0 3923.3 3923.3
--- --- --- --- --- ---
2015-10-27 16:49:44 1 min 19.311 sec 143.0 1166.6 1166.6
2015-10-27 16:49:44 1 min 19.338 sec 144.0 1165.3 1165.3
2015-10-27 16:49:44 1 min 19.365 sec 145.0 1163.8 1163.8
2015-10-27 16:49:44 1 min 19.393 sec 146.0 1163.0 1163.0
2015-10-27 16:49:46 1 min 20.789 sec 200.0 1095.1 1095.1
Variable Importances:
variable relative_importance scaled_importance percentage
SensorMeasureKalmanMean4 709743360.0 1.0 0.6
SensorMeasureKalmanMean3 172408064.0 0.2 0.1
SensorMeasureKalmanMean9 126265464.0 0.2 0.1
SensorMeasureKalmanMean14 50092948.0 0.1 0.0
SensorMeasureKalmanMean6 44630596.0 0.1 0.0
SensorMeasureKalmanMean11 30628940.0 0.0 0.0
SensorMeasureKalmanMean17 28122880.0 0.0 0.0
SensorMeasureKalmanMean21 25222878.0 0.0 0.0
SensorMeasureKalmanMean2 20427146.0 0.0 0.0
SensorMeasureKalmanMean7 17334488.0 0.0 0.0
SensorMeasureKalmanMean20 17059280.0 0.0 0.0
SensorMeasureKalmanMean12 13289842.0 0.0 0.0
SensorMeasureKalmanMean8 7374711.5 0.0 0.0
SensorMeasureKalmanMean15 5707966.0 0.0 0.0
SensorMeasureKalmanMean13 5684577.5 0.0 0.0
OpSet1 242252.4 0.0 0.0
OpSet2 170719.0 0.0 0.0
Out[18]:

Exploratory model analysis

See how well the models do predicting on the training set. Should be pretty good, but often worth a check.

Predictions are an ensemble of the 10-fold cross validation models.


In [19]:
train_hex["weights"] = 1
allModels = bestGbmModel.xvals
pred = sum([model.predict(train_hex) for model in allModels]) / len(allModels)

In [20]:
pred["actual"] = train_hex["RemainingUsefulLife"]
pred["unit"] = train_hex["UnitNumber"]

Plot actual remaining useful life vs predicted remaining useful life

Ideally all points would be on the diagonal, indication prediction from data matched exactly the actual.

Also, it is important that the prediction gets more accurate the closer it gets to no useful life remaining.

Looking at a sample of the first 12 units.

Moved predictions from H2O to Python Pandas for plotting using Seaborn.


In [21]:
scored_df = pred.as_data_frame(use_pandas=True)

In [22]:
sns.set_context("notebook", font_scale=3)
g=sns.lmplot(x="actual",y="predict",hue="unit",col="unit",data=scored_df[scored_df.unit < 13],col_wrap=3,fit_reg=False, size=10)

ticks = np.linspace(-300,100, 5)

g = (g.set_axis_labels("Remaining Useful Life", "Predicted Useful Life")
      .set(xlim=(-325, 125), ylim=(-325, 125),
           xticks=ticks, yticks=ticks))

In [23]:
np.linspace(-300,100, 5)


Out[23]:
array([-300., -200., -100.,    0.,  100.])

Model prediction and assessment

Predict on the hold-out test set, using an average of all the cross validation models.


In [24]:
testPreds = sum([model.predict(test_hex) for model in allModels]) / len(allModels)

Append the original index information (Cycle and UnitNumber) to the predicted values so we have them later.


In [25]:
testPreds["Cycle"] = test_hex["Cycle"]
testPreds["UnitNumber"] = test_hex["UnitNumber"]

Move the predictions over to Python Pandas for final analysis and scoring


In [26]:
testPreds_df = testPreds.as_data_frame(use_pandas=True)

Load up the actual Remaining Useful Life information.


In [27]:
if doKalmanSmoothing:
    actual_RUL = pd.read_csv(_locate("rul_FD001_preprocessed.csv"))
else:
    actual_RUL = pd.read_csv("http://h2o-public-test-data.s3.amazonaws.com/bigdata/laptop/CMAPSSData/rul_FD001_preprocessed.csv")

The final scoring used in the competition is based on a single value per unit. We extract the last three predictions and use the mean of those (simple aggregation) and put the prediction back from remaining useful life in T-minus format to cycles remaining (positive).


In [28]:
def aggfunc(x):
    return np.mean( x.order().tail(3) )

grouped_by_unit_preds = testPreds_df.groupby("UnitNumber", as_index=False)
predictedRUL = grouped_by_unit_preds.agg({'predict' : aggfunc })
predictedRUL.predict = -predictedRUL.predict

Add the prediction to the actual data frame, and use the scoring used in the PHMO8 competition (more penality for predicting more useful life than there is actual).


In [29]:
final = pd.concat([actual_RUL, predictedRUL.predict], axis=1)

In [30]:
def rowScore(row):
    d = row.predict-row.RemainingUsefulLife
    return np.exp( -d/10 )-1 if d < 0 else np.exp(d/13)-1

rowScores = final.apply(rowScore, axis=1)

This is the final score using PHM08 method of scoring.


In [31]:
sum(rowScores)


Out[31]:
1174.2997365847225

Finally look at the actual remaining useful life and compare to predicted

Some things that should ideally would be true:

  • As RUL gets closer to zero, the prediction gets closer to actual

In [32]:
sns.set_context("notebook", font_scale=1.25)
sns.regplot("RemainingUsefulLife", "predict", data=final, fit_reg=False);