In [1]:
import json
from pprint import pprint
import numpy as np
import copy
%matplotlib inline
# Import the data
import WTBLoad
wtb = WTBLoad.load()
In [2]:
from sklearn import manifold
import matplotlib
import matplotlib.pyplot as plt
matplotlib.rcParams['figure.figsize'] = (15,10)
tsne = manifold.TSNE(n_components=2, random_state=10)
trans_data = tsne.fit_transform(wtb).T
#pprint(trans_data)
additions = wtb.index.values
plt.scatter(trans_data[0], trans_data[1])
for label, x, y in zip(additions,trans_data[0], trans_data[1]):
plt.annotate(
label,
xy = (x, y), xytext = (0,0),
textcoords = 'offset points', ha = 'right', va = 'bottom'
)
plt.axis('tight')
plt.show()