In [10]:
import numpy as np
import matplotlib.pyplot as plt
% matplotlib inline
data=np.loadtxt(fname='inflammation-01.csv', delimiter=',')
image = plt.imshow(data)
plt.show()
ave_inflamation = np.mean(data, axis=0)
ave_plot = plt.plot(ave_inflammation)
plt.show()
data_pd=(data[0,:])
plot_d=plt.plot(data_pd)
plt.show()
In [20]:
import numpy as np
import matplotlib.pyplot as plt
import glob
print('running...')
filenames=sorted(glob.glob('inflammation*.csv'))
filenames=filenames[0:]
x,y=0,0
ave_patient_infl=[]
ave_infla_per_day=[]
for f in filenames:
data=np.loadtxt(fname=f,delimiter=',')
ave_infla_per_day[x]= np.mean(data[:,x])#Top->Down starts column 0
ave_patient_infl[x]= np.mean(data[x,:])#Left->Right starts row 0
y=y+1
print("Patient", y,"Average inflammation Day:",y,ave_infla_per_day[x])
print("Day",y,"Average inflammation:",ave_patient_infl[x])
x=x+1
In [12]:
!ls
In [11]:
import numpy, glob
import matplotlib.pyplot
% matplotlib inline
filenames = sorted(glob.glob('data/inflammation*.csv'))
filenames = filenames[0:3]
for f in filenames:
print(f)
data = numpy.loadtxt(fname=f, delimiter=',')
fig = matplotlib.pyplot.figure(figsize=(10.0, 3.0))
axes1 = fig.add_subplot(1, 3, 1)
axes2 = fig.add_subplot(1, 3, 2)
axes3 = fig.add_subplot(1, 3, 3)
axes1.set_ylabel('average')
axes1.plot(numpy.mean(data, axis=0))
axes2.set_ylabel('max')
axes2.plot(numpy.max(data, axis=0))
axes3.set_ylabel('min')
axes3.plot(numpy.min(data, axis=0))
fig.tight_layout()
matplotlib.pyplot.show()
In [ ]: