In [1]:
%matplotlib inline
%pylab inline
Populating the interactive namespace from numpy and matplotlib
In [2]:
repeat = 1
In [3]:
import menpo.io as mio
from menpo.landmark import labeller, streetscene_car_view_1
from menpofast.utils import convert_from_menpo
group = 'streetscene_car_view_1'
test_images = []
for i in mio.import_images('/data/PhD/DataBases/cars/cmu_car_data1/view1/', verbose=True,
max_images=None):
# convert the image from menpo Image to menpofast Image (channels at front)
i = convert_from_menpo(i)
labeller(i, 'PTS', eval(group))
i.crop_to_landmarks_proportion_inplace(1, group=group)
i = i.rescale_landmarks_to_diagonal_range(200, group=group)
if i.n_channels == 3:
i = i.as_greyscale(mode='average')
test_images.append(i)
- Loading 843 assets: [====================] 100%
In [4]:
test_images = test_images[1::2]
In [5]:
from menpo.visualize import visualize_images
visualize_images(test_images)
In [6]:
from alabortcvpr2015.utils import pickle_load
aam = pickle_load('/data/PhD/Models/aam_view1_fast_dsift')
In [7]:
sampling_mask = np.require(np.zeros(aam.parts_shape), dtype=np.bool)
sampling_mask[::2, ::2] = True
imshow(sampling_mask)
Out[7]:
<matplotlib.image.AxesImage at 0x7f2446728310>
In [8]:
from alabortcvpr2015.aam import PartsAAMFitter, AIC
fitter = PartsAAMFitter(aam, algorithm_cls=AIC, n_shape=[3, 12],
n_appearance=[25, 50], sampling_mask=sampling_mask)
In [10]:
fitter_results = []
for seed in xrange(repeat):
np.random.seed(seed=seed)
for j, i in enumerate(test_images):
gt_s = i.landmarks[group].lms
s = fitter.perturb_shape(gt_s, noise_std=0.05)
fr = fitter.fit(i, s, gt_shape=gt_s, max_iters=20, prior=False)
fitter_results.append(fr)
fr.downscale = 0.5
print 'Image: ', j
print fr
Image: 0
Initial error: 0.2243
Final error: 0.0832
Image: 1
Initial error: 0.1145
Final error: 0.0617
Image: 2
Initial error: 0.0961
Final error: 0.0376
Image: 3
Initial error: 0.0782
Final error: 0.0179
Image: 4
Initial error: 0.0530
Final error: 0.0220
Image: 5
Initial error: 0.1533
Final error: 0.0642
Image: 6
Initial error: 0.0994
Final error: 0.0470
Image: 7
Initial error: 0.0817
Final error: 0.0606
Image: 8
Initial error: 0.1135
Final error: 0.0804
Image: 9
Initial error: 0.0767
Final error: 0.0621
Image: 10
Initial error: 0.1494
Final error: 0.0235
Image: 11
Initial error: 0.0814
Final error: 0.0549
Image: 12
Initial error: 0.1664
Final error: 0.0351
Image: 13
Initial error: 0.0927
Final error: 0.0441
Image: 14
Initial error: 0.0548
Final error: 0.0199
Image: 15
Initial error: 0.1583
Final error: 0.0425
Image: 16
Initial error: 0.0644
Final error: 0.0259
Image: 17
Initial error: 0.0661
Final error: 0.0418
Image: 18
Initial error: 0.0455
Final error: 0.0163
Image: 19
Initial error: 0.0641
Final error: 0.0289
Image: 20
Initial error: 0.1780
Final error: 0.0941
Image: 21
Initial error: 0.0843
Final error: 0.0535
Image: 22
Initial error: 0.0727
Final error: 0.0307
Image: 23
Initial error: 0.0499
Final error: 0.0354
Image: 24
Initial error: 0.0585
Final error: 0.0243
Image: 25
Initial error: 0.1300
Final error: 0.0914
Image: 26
Initial error: 0.1212
Final error: 0.0497
Image: 27
Initial error: 0.1534
Final error: 0.0257
Image: 28
Initial error: 0.0709
Final error: 0.0248
Image: 29
Initial error: 0.1113
Final error: 0.0454
Image: 30
Initial error: 0.1458
Final error: 0.0692
Image: 31
Initial error: 0.1072
Final error: 0.0351
Image: 32
Initial error: 0.0633
Final error: 0.0266
Image: 33
Initial error: 0.0607
Final error: 0.0455
Image: 34
Initial error: 0.0859
Final error: 0.0167
Image: 35
Initial error: 0.0635
Final error: 0.0159
Image: 36
Initial error: 0.1539
Final error: 0.0713
Image: 37
Initial error: 0.0932
Final error: 0.0201
Image: 38
Initial error: 0.1046
Final error: 0.0347
Image: 39
Initial error: 0.0648
Final error: 0.0275
Image: 40
Initial error: 0.0476
Final error: 0.0249
Image: 41
Initial error: 0.1738
Final error: 0.0378
Image: 42
Initial error: 0.1014
Final error: 0.0382
Image: 43
Initial error: 0.1115
Final error: 0.0360
Image: 44
Initial error: 0.0671
Final error: 0.0261
Image: 45
Initial error: 0.1683
Final error: 0.0526
Image: 46
Initial error: 0.0883
Final error: 0.0464
Image: 47
Initial error: 0.0934
Final error: 0.0192
Image: 48
Initial error: 0.1439
Final error: 0.0483
Image: 49
Initial error: 0.1628
Final error: 0.0215
Image: 50
Initial error: 0.0734
Final error: 0.0366
Image: 51
Initial error: 0.0904
Final error: 0.0247
Image: 52
Initial error: 0.0389
Final error: 0.0227
Image: 53
Initial error: 0.0769
Final error: 0.0458
Image: 54
Initial error: 0.0875
Final error: 0.0299
Image: 55
Initial error: 0.0702
Final error: 0.0377
Image: 56
Initial error: 0.0628
Final error: 0.0243
Image: 57
Initial error: 0.1196
Final error: 0.0253
Image: 58
Initial error: 0.0631
Final error: 0.0374
Image: 59
Initial error: 0.1177
Final error: 0.0270
Image: 60
Initial error: 0.0603
Final error: 0.0205
Image: 61
Initial error: 0.0649
Final error: 0.0156
Image: 62
Initial error: 0.1629
Final error: 0.0655
Image: 63
Initial error: 0.0608
Final error: 0.0176
Image: 64
Initial error: 0.0788
Final error: 0.0227
Image: 65
Initial error: 0.0771
Final error: 0.0305
Image: 66
Initial error: 0.0846
Final error: 0.0200
Image: 67
Initial error: 0.2149
Final error: 0.0322
Image: 68
Initial error: 0.1047
Final error: 0.0349
Image: 69
Initial error: 0.1714
Final error: 0.1064
Image: 70
Initial error: 0.1157
Final error: 0.0611
Image: 71
Initial error: 0.1058
Final error: 0.0428
Image: 72
Initial error: 0.1104
Final error: 0.0383
Image: 73
Initial error: 0.1724
Final error: 0.1109
Image: 74
Initial error: 0.0464
Final error: 0.0319
Image: 75
Initial error: 0.1102
Final error: 0.0494
Image: 76
Initial error: 0.0949
Final error: 0.0430
Image: 77
Initial error: 0.0995
Final error: 0.0322
Image: 78
Initial error: 0.0719
Final error: 0.0250
Image: 79
Initial error: 0.0628
Final error: 0.0630
Image: 80
Initial error: 0.1308
Final error: 0.0434
Image: 81
Initial error: 0.1367
Final error: 0.0990
Image: 82
Initial error: 0.1637
Final error: 0.0535
Image: 83
Initial error: 0.1269
Final error: 0.0445
Image: 84
Initial error: 0.1102
Final error: 0.0308
Image: 85
Initial error: 0.0818
Final error: 0.0433
Image: 86
Initial error: 0.1766
Final error: 0.0864
Image: 87
Initial error: 0.0934
Final error: 0.0167
Image: 88
Initial error: 0.0418
Final error: 0.0321
Image: 89
Initial error: 0.0886
Final error: 0.0460
Image: 90
Initial error: 0.1258
Final error: 0.0614
Image: 91
Initial error: 0.0489
Final error: 0.0223
Image: 92
Initial error: 0.0956
Final error: 0.0229
Image: 93
Initial error: 0.0658
Final error: 0.0386
Image: 94
Initial error: 0.0786
Final error: 0.0449
Image: 95
Initial error: 0.1918
Final error: 0.1112
Image: 96
Initial error: 0.1299
Final error: 0.0671
Image: 97
Initial error: 0.1210
Final error: 0.0187
Image: 98
Initial error: 0.0856
Final error: 0.0255
Image: 99
Initial error: 0.1375
Final error: 0.0392
Image: 100
Initial error: 0.0593
Final error: 0.0210
Image: 101
Initial error: 0.0869
Final error: 0.0337
Image: 102
Initial error: 0.0817
Final error: 0.0280
Image: 103
Initial error: 0.1382
Final error: 0.0528
Image: 104
Initial error: 0.1578
Final error: 0.1249
Image: 105
Initial error: 0.0874
Final error: 0.0382
Image: 106
Initial error: 0.2077
Final error: 0.1075
Image: 107
Initial error: 0.1324
Final error: 0.0274
Image: 108
Initial error: 0.1055
Final error: 0.0420
Image: 109
Initial error: 0.1302
Final error: 0.0354
Image: 110
Initial error: 0.1379
Final error: 0.0499
Image: 111
Initial error: 0.0599
Final error: 0.0183
Image: 112
Initial error: 0.1084
Final error: 0.0273
Image: 113
Initial error: 0.1501
Final error: 0.0349
Image: 114
Initial error: 0.0477
Final error: 0.0350
Image: 115
Initial error: 0.0861
Final error: 0.0179
Image: 116
Initial error: 0.1213
Final error: 0.0189
Image: 117
Initial error: 0.1751
Final error: 0.0820
Image: 118
Initial error: 0.0756
Final error: 0.0272
Image: 119
Initial error: 0.1130
Final error: 0.0264
Image: 120
Initial error: 0.0687
Final error: 0.0217
Image: 121
Initial error: 0.1403
Final error: 0.0355
Image: 122
Initial error: 0.0762
Final error: 0.0481
Image: 123
Initial error: 0.1050
Final error: 0.0183
Image: 124
Initial error: 0.0718
Final error: 0.0248
Image: 125
Initial error: 0.0936
Final error: 0.0196
Image: 126
Initial error: 0.2169
Final error: 0.1841
Image: 127
Initial error: 0.0602
Final error: 0.0214
Image: 128
Initial error: 0.0877
Final error: 0.0443
Image: 129
Initial error: 0.1520
Final error: 0.0277
Image: 130
Initial error: 0.1036
Final error: 0.0113
Image: 131
Initial error: 0.1785
Final error: 0.0876
Image: 132
Initial error: 0.1500
Final error: 0.0359
Image: 133
Initial error: 0.1255
Final error: 0.0237
Image: 134
Initial error: 0.1118
Final error: 0.0198
Image: 135
Initial error: 0.1121
Final error: 0.0434
Image: 136
Initial error: 0.2011
Final error: 0.0402
Image: 137
Initial error: 0.0632
Final error: 0.0232
Image: 138
Initial error: 0.1907
Final error: 0.2044
Image: 139
Initial error: 0.1717
Final error: 0.0249
Image: 140
Initial error: 0.1810
Final error: 0.0404
Image: 141
Initial error: 0.1418
Final error: 0.0217
Image: 142
Initial error: 0.1339
Final error: 0.0318
Image: 143
Initial error: 0.1093
Final error: 0.0356
Image: 144
Initial error: 0.1221
Final error: 0.0206
Image: 145
Initial error: 0.1485
Final error: 0.0325
Image: 146
Initial error: 0.1633
Final error: 0.0335
Image: 147
Initial error: 0.0487
Final error: 0.0272
Image: 148
Initial error: 0.0864
Final error: 0.0325
Image: 149
Initial error: 0.1623
Final error: 0.0376
Image: 150
Initial error: 0.1255
Final error: 0.0370
Image: 151
Initial error: 0.1928
Final error: 0.2091
Image: 152
Initial error: 0.1197
Final error: 0.0238
Image: 153
Initial error: 0.1100
Final error: 0.0168
Image: 154
Initial error: 0.1213
Final error: 0.0458
Image: 155
Initial error: 0.1632
Final error: 0.0667
Image: 156
Initial error: 0.1736
Final error: 0.0689
Image: 157
Initial error: 0.1291
Final error: 0.0360
Image: 158
Initial error: 0.0720
Final error: 0.0247
Image: 159
Initial error: 0.1199
Final error: 0.0161
Image: 160
Initial error: 0.1569
Final error: 0.0475
Image: 161
Initial error: 0.1061
Final error: 0.0316
Image: 162
Initial error: 0.1884
Final error: 0.0943
Image: 163
Initial error: 0.0689
Final error: 0.0564
Image: 164
Initial error: 0.0830
Final error: 0.0237
Image: 165
Initial error: 0.0618
Final error: 0.0217
Image: 166
Initial error: 0.0975
Final error: 0.0198
Image: 167
Initial error: 0.2169
Final error: 0.0943
Image: 168
Initial error: 0.1002
Final error: 0.0234
Image: 169
Initial error: 0.1054
Final error: 0.0213
Image: 170
Initial error: 0.1108
Final error: 0.0368
Image: 171
Initial error: 0.1580
Final error: 0.0324
Image: 172
Initial error: 0.1476
Final error: 0.0201
Image: 173
Initial error: 0.0963
Final error: 0.0612
Image: 174
Initial error: 0.1308
Final error: 0.0259
Image: 175
Initial error: 0.0971
Final error: 0.0415
Image: 176
Initial error: 0.0800
Final error: 0.0321
Image: 177
Initial error: 0.1530
Final error: 0.1010
Image: 178
Initial error: 0.1115
Final error: 0.0319
Image: 179
Initial error: 0.1162
Final error: 0.0329
Image: 180
Initial error: 0.0532
Final error: 0.0210
Image: 181
Initial error: 0.1252
Final error: 0.0410
Image: 182
Initial error: 0.0644
Final error: 0.0323
Image: 183
Initial error: 0.1919
Final error: 0.0845
Image: 184
Initial error: 0.1198
Final error: 0.0537
Image: 185
Initial error: 0.0981
Final error: 0.0376
Image: 186
Initial error: 0.1389
Final error: 0.0544
Image: 187
Initial error: 0.2075
Final error: 0.1053
Image: 188
Initial error: 0.1509
Final error: 0.0604
Image: 189
Initial error: 0.0969
Final error: 0.0171
Image: 190
Initial error: 0.1343
Final error: 0.0241
Image: 191
Initial error: 0.1542
Final error: 0.0411
Image: 192
Initial error: 0.1105
Final error: 0.0661
Image: 193
Initial error: 0.1773
Final error: 0.0994
Image: 194
Initial error: 0.0755
Final error: 0.0357
Image: 195
Initial error: 0.1753
Final error: 0.0958
Image: 196
Initial error: 0.0954
Final error: 0.0261
Image: 197
Initial error: 0.1211
Final error: 0.0222
Image: 198
Initial error: 0.1498
Final error: 0.0287
Image: 199
Initial error: 0.2054
Final error: 0.1555
Image: 200
Initial error: 0.0402
Final error: 0.0374
Image: 201
Initial error: 0.0563
Final error: 0.0257
Image: 202
Initial error: 0.1061
Final error: 0.0184
Image: 203
Initial error: 0.1475
Final error: 0.0224
Image: 204
Initial error: 0.0853
Final error: 0.0328
Image: 205
Initial error: 0.1535
Final error: 0.0280
Image: 206
Initial error: 0.1282
Final error: 0.0295
Image: 207
Initial error: 0.1849
Final error: 0.1950
Image: 208
Initial error: 0.1432
Final error: 0.0282
Image: 209
Initial error: 0.0608
Final error: 0.0447
Image: 210
Initial error: 0.1488
Final error: 0.0460
Image: 211
Initial error: 0.0441
Final error: 0.0279
Image: 212
Initial error: 0.1670
Final error: 0.0866
Image: 213
Initial error: 0.1190
Final error: 0.0273
Image: 214
Initial error: 0.1274
Final error: 0.1402
Image: 215
Initial error: 0.0845
Final error: 0.0443
Image: 216
Initial error: 0.0577
Final error: 0.0305
Image: 217
Initial error: 0.1004
Final error: 0.0344
Image: 218
Initial error: 0.1002
Final error: 0.0251
Image: 219
Initial error: 0.1394
Final error: 0.0287
Image: 220
Initial error: 0.0483
Final error: 0.0259
Image: 221
Initial error: 0.0779
Final error: 0.0334
Image: 222
Initial error: 0.1936
Final error: 0.1406
Image: 223
Initial error: 0.1880
Final error: 0.1001
Image: 224
Initial error: 0.1272
Final error: 0.0140
Image: 225
Initial error: 0.1701
Final error: 0.0405
Image: 226
Initial error: 0.2303
Final error: 0.1456
Image: 227
Initial error: 0.1417
Final error: 0.0273
Image: 228
Initial error: 0.1365
Final error: 0.0583
Image: 229
Initial error: 0.0500
Final error: 0.0219
Image: 230
Initial error: 0.2228
Final error: 0.1264
Image: 231
Initial error: 0.1710
Final error: 0.0478
Image: 232
Initial error: 0.1581
Final error: 0.0629
Image: 233
Initial error: 0.1730
Final error: 0.0198
Image: 234
Initial error: 0.1757
Final error: 0.0853
Image: 235
Initial error: 0.2150
Final error: 0.1747
Image: 236
Initial error: 0.0897
Final error: 0.0318
Image: 237
Initial error: 0.1069
Final error: 0.0233
Image: 238
Initial error: 0.0798
Final error: 0.0309
Image: 239
Initial error: 0.1332
Final error: 0.0324
Image: 240
Initial error: 0.0845
Final error: 0.0233
Image: 241
Initial error: 0.1385
Final error: 0.0643
Image: 242
Initial error: 0.1196
Final error: 0.0287
Image: 243
Initial error: 0.1181
Final error: 0.0246
Image: 244
Initial error: 0.0739
Final error: 0.0139
Image: 245
Initial error: 0.2007
Final error: 0.1507
Image: 246
Initial error: 0.1263
Final error: 0.0420
Image: 247
Initial error: 0.0679
Final error: 0.0450
Image: 248
Initial error: 0.1160
Final error: 0.0180
Image: 249
Initial error: 0.1809
Final error: 0.0241
Image: 250
Initial error: 0.0857
Final error: 0.0348
Image: 251
Initial error: 0.1399
Final error: 0.0492
Image: 252
Initial error: 0.1658
Final error: 0.1054
Image: 253
Initial error: 0.0934
Final error: 0.0342
Image: 254
Initial error: 0.1092
Final error: 0.0695
Image: 255
Initial error: 0.0671
Final error: 0.0240
Image: 256
Initial error: 0.1590
Final error: 0.0336
Image: 257
Initial error: 0.0474
Final error: 0.0276
Image: 258
Initial error: 0.1141
Final error: 0.0237
Image: 259
Initial error: 0.2288
Final error: 0.0824
Image: 260
Initial error: 0.2038
Final error: 0.1256
Image: 261
Initial error: 0.0449
Final error: 0.0218
Image: 262
Initial error: 0.1168
Final error: 0.0197
Image: 263
Initial error: 0.1009
Final error: 0.0532
Image: 264
Initial error: 0.1506
Final error: 0.0334
Image: 265
Initial error: 0.0329
Final error: 0.0347
Image: 266
Initial error: 0.0395
Final error: 0.0263
Image: 267
Initial error: 0.1076
Final error: 0.0328
Image: 268
Initial error: 0.0802
Final error: 0.0395
Image: 269
Initial error: 0.0700
Final error: 0.0326
Image: 270
Initial error: 0.2035
Final error: 0.0831
Image: 271
Initial error: 0.1157
Final error: 0.0262
Image: 272
Initial error: 0.0658
Final error: 0.0204
Image: 273
Initial error: 0.1080
Final error: 0.0308
Image: 274
Initial error: 0.0964
Final error: 0.0345
Image: 275
Initial error: 0.1078
Final error: 0.0375
Image: 276
Initial error: 0.0474
Final error: 0.0289
Image: 277
Initial error: 0.1275
Final error: 0.0233
Image: 278
Initial error: 0.1897
Final error: 0.0831
Image: 279
Initial error: 0.0558
Final error: 0.0263
Image: 280
Initial error: 0.1083
Final error: 0.0248
Image: 281
Initial error: 0.1548
Final error: 0.0524
Image: 282
Initial error: 0.1325
Final error: 0.0148
Image: 283
Initial error: 0.0937
Final error: 0.0287
Image: 284
Initial error: 0.0618
Final error: 0.0288
Image: 285
Initial error: 0.1458
Final error: 0.0243
Image: 286
Initial error: 0.0591
Final error: 0.0125
Image: 287
Initial error: 0.0842
Final error: 0.0135
Image: 288
Initial error: 0.1267
Final error: 0.0255
Image: 289
Initial error: 0.1257
Final error: 0.0212
Image: 290
Initial error: 0.0738
Final error: 0.0242
Image: 291
Initial error: 0.1325
Final error: 0.0197
Image: 292
Initial error: 0.0897
Final error: 0.0147
Image: 293
Initial error: 0.0670
Final error: 0.0201
Image: 294
Initial error: 0.0917
Final error: 0.0224
Image: 295
Initial error: 0.0747
Final error: 0.0449
Image: 296
Initial error: 0.0768
Final error: 0.0420
Image: 297
Initial error: 0.1124
Final error: 0.0263
Image: 298
Initial error: 0.1395
Final error: 0.0300
Image: 299
Initial error: 0.0952
Final error: 0.0346
Image: 300
Initial error: 0.0443
Final error: 0.0346
Image: 301
Initial error: 0.1195
Final error: 0.0245
Image: 302
Initial error: 0.1256
Final error: 0.0170
Image: 303
Initial error: 0.0674
Final error: 0.0495
Image: 304
Initial error: 0.0891
Final error: 0.0205
Image: 305
Initial error: 0.0607
Final error: 0.0357
Image: 306
Initial error: 0.0762
Final error: 0.0289
Image: 307
Initial error: 0.0390
Final error: 0.0365
Image: 308
Initial error: 0.2159
Final error: 0.1346
Image: 309
Initial error: 0.0603
Final error: 0.0188
Image: 310
Initial error: 0.1415
Final error: 0.0467
Image: 311
Initial error: 0.0542
Final error: 0.0484
Image: 312
Initial error: 0.0906
Final error: 0.0292
Image: 313
Initial error: 0.0804
Final error: 0.0302
Image: 314
Initial error: 0.1737
Final error: 0.0668
Image: 315
Initial error: 0.1567
Final error: 0.1169
Image: 316
Initial error: 0.1774
Final error: 0.1000
Image: 317
Initial error: 0.1453
Final error: 0.1368
Image: 318
Initial error: 0.1510
Final error: 0.0797
Image: 319
Initial error: 0.0827
Final error: 0.0277
Image: 320
Initial error: 0.0836
Final error: 0.0243
Image: 321
Initial error: 0.0788
Final error: 0.0250
Image: 322
Initial error: 0.0683
Final error: 0.0241
Image: 323
Initial error: 0.1261
Final error: 0.0338
Image: 324
Initial error: 0.1481
Final error: 0.0255
Image: 325
Initial error: 0.0809
Final error: 0.0541
Image: 326
Initial error: 0.1241
Final error: 0.0434
Image: 327
Initial error: 0.0524
Final error: 0.0236
Image: 328
Initial error: 0.0725
Final error: 0.0238
Image: 329
Initial error: 0.1324
Final error: 0.0224
Image: 330
Initial error: 0.0753
Final error: 0.0280
Image: 331
Initial error: 0.0441
Final error: 0.0262
Image: 332
Initial error: 0.0566
Final error: 0.0346
Image: 333
Initial error: 0.1139
Final error: 0.0218
Image: 334
Initial error: 0.0824
Final error: 0.0237
Image: 335
Initial error: 0.0819
Final error: 0.0454
Image: 336
Initial error: 0.0859
Final error: 0.0238
Image: 337
Initial error: 0.2034
Final error: 0.0214
Image: 338
Initial error: 0.0722
Final error: 0.0272
Image: 339
Initial error: 0.1232
Final error: 0.0269
Image: 340
Initial error: 0.0748
Final error: 0.0305
Image: 341
Initial error: 0.0740
Final error: 0.0266
Image: 342
Initial error: 0.1161
Final error: 0.0254
Image: 343
Initial error: 0.1158
Final error: 0.0174
Image: 344
Initial error: 0.1199
Final error: 0.0303
Image: 345
Initial error: 0.1984
Final error: 0.1420
Image: 346
Initial error: 0.0439
Final error: 0.0372
Image: 347
Initial error: 0.0689
Final error: 0.0240
Image: 348
Initial error: 0.0739
Final error: 0.0269
Image: 349
Initial error: 0.0555
Final error: 0.0314
Image: 350
Initial error: 0.1362
Final error: 0.0158
Image: 351
Initial error: 0.0440
Final error: 0.0300
Image: 352
Initial error: 0.0788
Final error: 0.0271
Image: 353
Initial error: 0.1450
Final error: 0.0253
Image: 354
Initial error: 0.0965
Final error: 0.0259
Image: 355
Initial error: 0.0527
Final error: 0.0464
Image: 356
Initial error: 0.0737
Final error: 0.0191
Image: 357
Initial error: 0.2208
Final error: 0.1438
Image: 358
Initial error: 0.0736
Final error: 0.0390
Image: 359
Initial error: 0.1433
Final error: 0.0815
Image: 360
Initial error: 0.0562
Final error: 0.0219
Image: 361
Initial error: 0.1793
Final error: 0.0237
Image: 362
Initial error: 0.1413
Final error: 0.0321
Image: 363
Initial error: 0.0653
Final error: 0.0910
Image: 364
Initial error: 0.1447
Final error: 0.0511
Image: 365
Initial error: 0.1107
Final error: 0.0191
Image: 366
Initial error: 0.0921
Final error: 0.0267
Image: 367
Initial error: 0.0530
Final error: 0.0312
Image: 368
Initial error: 0.1093
Final error: 0.0195
Image: 369
Initial error: 0.0444
Final error: 0.0302
Image: 370
Initial error: 0.1360
Final error: 0.0878
Image: 371
Initial error: 0.1394
Final error: 0.0296
Image: 372
Initial error: 0.0796
Final error: 0.0256
Image: 373
Initial error: 0.1550
Final error: 0.0709
Image: 374
Initial error: 0.1988
Final error: 0.1586
Image: 375
Initial error: 0.1767
Final error: 0.1521
Image: 376
Initial error: 0.1769
Final error: 0.0933
Image: 377
Initial error: 0.1535
Final error: 0.0342
Image: 378
Initial error: 0.0677
Final error: 0.0444
Image: 379
Initial error: 0.1463
Final error: 0.0372
Image: 380
Initial error: 0.1646
Final error: 0.0849
Image: 381
Initial error: 0.0942
Final error: 0.0377
Image: 382
Initial error: 0.0990
Final error: 0.0210
Image: 383
Initial error: 0.1384
Final error: 0.0185
Image: 384
Initial error: 0.0973
Final error: 0.0420
Image: 385
Initial error: 0.1129
Final error: 0.0280
Image: 386
Initial error: 0.0595
Final error: 0.0257
Image: 387
Initial error: 0.0579
Final error: 0.0411
Image: 388
Initial error: 0.1683
Final error: 0.0344
Image: 389
Initial error: 0.0694
Final error: 0.0317
Image: 390
Initial error: 0.1295
Final error: 0.0512
Image: 391
Initial error: 0.0731
Final error: 0.0261
Image: 392
Initial error: 0.1297
Final error: 0.0892
Image: 393
Initial error: 0.0529
Final error: 0.0338
Image: 394
Initial error: 0.0804
Final error: 0.0167
Image: 395
Initial error: 0.1809
Final error: 0.0487
Image: 396
Initial error: 0.1456
Final error: 0.0189
Image: 397
Initial error: 0.1298
Final error: 0.0457
Image: 398
Initial error: 0.1081
Final error: 0.0384
Image: 399
Initial error: 0.1478
Final error: 0.0525
Image: 400
Initial error: 0.0678
Final error: 0.0200
Image: 401
Initial error: 0.0719
Final error: 0.0254
Image: 402
Initial error: 0.1275
Final error: 0.0258
Image: 403
Initial error: 0.1354
Final error: 0.0180
Image: 404
Initial error: 0.1277
Final error: 0.0920
Image: 405
Initial error: 0.1451
Final error: 0.0305
Image: 406
Initial error: 0.0704
Final error: 0.0349
Image: 407
Initial error: 0.0865
Final error: 0.0449
Image: 408
Initial error: 0.1185
Final error: 0.0278
Image: 409
Initial error: 0.1144
Final error: 0.0269
Image: 410
Initial error: 0.1012
Final error: 0.0242
Image: 411
Initial error: 0.0942
Final error: 0.0356
Image: 412
Initial error: 0.0580
Final error: 0.0182
Image: 413
Initial error: 0.1524
Final error: 0.0193
Image: 414
Initial error: 0.0916
Final error: 0.0386
Image: 415
Initial error: 0.1738
Final error: 0.0195
Image: 416
Initial error: 0.0628
Final error: 0.0221
Image: 417
Initial error: 0.1059
Final error: 0.0336
Image: 418
Initial error: 0.0642
Final error: 0.0195
Image: 419
Initial error: 0.0799
Final error: 0.0247
Image: 420
Initial error: 0.1781
Final error: 0.1023
In [11]:
from menpofit.visualize import visualize_fitting_results
visualize_fitting_results(fitter_results)
In [12]:
from alabortcvpr2015.utils import pickle_dump
from alabortcvpr2015.result import SerializableResult
results = [SerializableResult('none', fr.final_shape, fr.n_iters, 'AIC', fr.gt_shape)
for fr in fitter_results]
pickle_dump(results, '/data/PhD/Results/aam_aic_view1_fast_dsift')
In [13]:
%timeit fitter.fit(i, s, gt_shape=gt_s, max_iters=20)
10 loops, best of 3: 81.2 ms per loop
In [ ]:
#import line_profiler
#import IPython
#ip = IPython.get_ipython()
#ip.define_magic('lprun', line_profiler.magic_lprun)
In [ ]:
#from alabortcvpr2015.aam import AIC
#%lprun -f AIC.run fitter.fit(i, s, gt_shape=gt_s, max_iters=20)
In [14]:
sampling_mask = np.require(np.zeros(aam.parts_shape), dtype=np.bool)
sampling_mask[::2, ::2] = True
imshow(sampling_mask)
Out[14]:
<matplotlib.image.AxesImage at 0x7f2444484c50>
In [15]:
from alabortcvpr2015.aam import PartsAAMFitter, PIC
fitter = PartsAAMFitter(aam, algorithm_cls=PIC, n_shape=[3, 12],
n_appearance=[25, 50], sampling_mask=sampling_mask)
In [17]:
fitter_results = []
for seed in xrange(repeat):
np.random.seed(seed=seed)
for j, i in enumerate(test_images):
gt_s = i.landmarks[group].lms
s = fitter.perturb_shape(gt_s, noise_std=0.05)
fr = fitter.fit(i, s, gt_shape=gt_s, max_iters=20, prior=False)
fitter_results.append(fr)
fr.downscale = 0.5
print 'Image: ', j
print fr
Image: 0
Initial error: 0.2243
Final error: 0.0457
Image: 1
Initial error: 0.1145
Final error: 0.0584
Image: 2
Initial error: 0.0961
Final error: 0.0416
Image: 3
Initial error: 0.0782
Final error: 0.0190
Image: 4
Initial error: 0.0530
Final error: 0.0169
Image: 5
Initial error: 0.1533
Final error: 0.0364
Image: 6
Initial error: 0.0994
Final error: 0.0529
Image: 7
Initial error: 0.0817
Final error: 0.0558
Image: 8
Initial error: 0.1135
Final error: 0.0738
Image: 9
Initial error: 0.0767
Final error: 0.0694
Image: 10
Initial error: 0.1494
Final error: 0.0282
Image: 11
Initial error: 0.0814
Final error: 0.0350
Image: 12
Initial error: 0.1664
Final error: 0.1094
Image: 13
Initial error: 0.0927
Final error: 0.0404
Image: 14
Initial error: 0.0548
Final error: 0.0285
Image: 15
Initial error: 0.1583
Final error: 0.0577
Image: 16
Initial error: 0.0644
Final error: 0.0302
Image: 17
Initial error: 0.0661
Final error: 0.0401
Image: 18
Initial error: 0.0455
Final error: 0.0194
Image: 19
Initial error: 0.0641
Final error: 0.0389
Image: 20
Initial error: 0.1780
Final error: 0.0307
Image: 21
Initial error: 0.0843
Final error: 0.0834
Image: 22
Initial error: 0.0727
Final error: 0.0254
Image: 23
Initial error: 0.0499
Final error: 0.0487
Image: 24
Initial error: 0.0585
Final error: 0.0255
Image: 25
Initial error: 0.1300
Final error: 0.0280
Image: 26
Initial error: 0.1212
Final error: 0.0411
Image: 27
Initial error: 0.1534
Final error: 0.0380
Image: 28
Initial error: 0.0709
Final error: 0.0205
Image: 29
Initial error: 0.1113
Final error: 0.0450
Image: 30
Initial error: 0.1458
Final error: 0.0357
Image: 31
Initial error: 0.1072
Final error: 0.0263
Image: 32
Initial error: 0.0633
Final error: 0.0520
Image: 33
Initial error: 0.0607
Final error: 0.0646
Image: 34
Initial error: 0.0859
Final error: 0.0152
Image: 35
Initial error: 0.0635
Final error: 0.0228
Image: 36
Initial error: 0.1539
Final error: 0.0401
Image: 37
Initial error: 0.0932
Final error: 0.0467
Image: 38
Initial error: 0.1046
Final error: 0.0341
Image: 39
Initial error: 0.0648
Final error: 0.0296
Image: 40
Initial error: 0.0476
Final error: 0.0355
Image: 41
Initial error: 0.1738
Final error: 0.0380
Image: 42
Initial error: 0.1014
Final error: 0.0292
Image: 43
Initial error: 0.1115
Final error: 0.0386
Image: 44
Initial error: 0.0671
Final error: 0.0513
Image: 45
Initial error: 0.1683
Final error: 0.0704
Image: 46
Initial error: 0.0883
Final error: 0.0350
Image: 47
Initial error: 0.0934
Final error: 0.0268
Image: 48
Initial error: 0.1439
Final error: 0.0442
Image: 49
Initial error: 0.1628
Final error: 0.0317
Image: 50
Initial error: 0.0734
Final error: 0.0516
Image: 51
Initial error: 0.0904
Final error: 0.0328
Image: 52
Initial error: 0.0389
Final error: 0.0267
Image: 53
Initial error: 0.0769
Final error: 0.0392
Image: 54
Initial error: 0.0875
Final error: 0.0297
Image: 55
Initial error: 0.0702
Final error: 0.0395
Image: 56
Initial error: 0.0628
Final error: 0.0276
Image: 57
Initial error: 0.1196
Final error: 0.0543
Image: 58
Initial error: 0.0631
Final error: 0.0385
Image: 59
Initial error: 0.1177
Final error: 0.0420
Image: 60
Initial error: 0.0603
Final error: 0.0314
Image: 61
Initial error: 0.0649
Final error: 0.0181
Image: 62
Initial error: 0.1629
Final error: 0.0723
Image: 63
Initial error: 0.0608
Final error: 0.0347
Image: 64
Initial error: 0.0788
Final error: 0.0291
Image: 65
Initial error: 0.0771
Final error: 0.0217
Image: 66
Initial error: 0.0846
Final error: 0.0431
Image: 67
Initial error: 0.2149
Final error: 0.0397
Image: 68
Initial error: 0.1047
Final error: 0.0501
Image: 69
Initial error: 0.1714
Final error: 0.1245
Image: 70
Initial error: 0.1157
Final error: 0.1358
Image: 71
Initial error: 0.1058
Final error: 0.0760
Image: 72
Initial error: 0.1104
Final error: 0.0404
Image: 73
Initial error: 0.1724
Final error: 0.0316
Image: 74
Initial error: 0.0464
Final error: 0.0394
Image: 75
Initial error: 0.1102
Final error: 0.0696
Image: 76
Initial error: 0.0949
Final error: 0.0259
Image: 77
Initial error: 0.0995
Final error: 0.0321
Image: 78
Initial error: 0.0719
Final error: 0.0548
Image: 79
Initial error: 0.0628
Final error: 0.0670
Image: 80
Initial error: 0.1308
Final error: 0.0425
Image: 81
Initial error: 0.1367
Final error: 0.0315
Image: 82
Initial error: 0.1637
Final error: 0.0383
Image: 83
Initial error: 0.1269
Final error: 0.0570
Image: 84
Initial error: 0.1102
Final error: 0.0405
Image: 85
Initial error: 0.0818
Final error: 0.0505
Image: 86
Initial error: 0.1766
Final error: 0.0433
Image: 87
Initial error: 0.0934
Final error: 0.0324
Image: 88
Initial error: 0.0418
Final error: 0.0405
Image: 89
Initial error: 0.0886
Final error: 0.0467
Image: 90
Initial error: 0.1258
Final error: 0.0987
Image: 91
Initial error: 0.0489
Final error: 0.0361
Image: 92
Initial error: 0.0956
Final error: 0.0258
Image: 93
Initial error: 0.0658
Final error: 0.0387
Image: 94
Initial error: 0.0786
Final error: 0.0470
Image: 95
Initial error: 0.1918
Final error: 0.0398
Image: 96
Initial error: 0.1299
Final error: 0.0327
Image: 97
Initial error: 0.1210
Final error: 0.0462
Image: 98
Initial error: 0.0856
Final error: 0.0315
Image: 99
Initial error: 0.1375
Final error: 0.0250
Image: 100
Initial error: 0.0593
Final error: 0.0539
Image: 101
Initial error: 0.0869
Final error: 0.0351
Image: 102
Initial error: 0.0817
Final error: 0.0260
Image: 103
Initial error: 0.1382
Final error: 0.0839
Image: 104
Initial error: 0.1578
Final error: 0.2586
Image: 105
Initial error: 0.0874
Final error: 0.0489
Image: 106
Initial error: 0.2077
Final error: 0.0883
Image: 107
Initial error: 0.1324
Final error: 0.0208
Image: 108
Initial error: 0.1055
Final error: 0.1131
Image: 109
Initial error: 0.1302
Final error: 0.0243
Image: 110
Initial error: 0.1379
Final error: 0.0609
Image: 111
Initial error: 0.0599
Final error: 0.0283
Image: 112
Initial error: 0.1084
Final error: 0.0271
Image: 113
Initial error: 0.1501
Final error: 0.0387
Image: 114
Initial error: 0.0477
Final error: 0.0469
Image: 115
Initial error: 0.0861
Final error: 0.0236
Image: 116
Initial error: 0.1213
Final error: 0.0256
Image: 117
Initial error: 0.1751
Final error: 0.1856
Image: 118
Initial error: 0.0756
Final error: 0.0343
Image: 119
Initial error: 0.1130
Final error: 0.0981
Image: 120
Initial error: 0.0687
Final error: 0.0309
Image: 121
Initial error: 0.1403
Final error: 0.0411
Image: 122
Initial error: 0.0762
Final error: 0.0274
Image: 123
Initial error: 0.1050
Final error: 0.0238
Image: 124
Initial error: 0.0718
Final error: 0.0320
Image: 125
Initial error: 0.0936
Final error: 0.0420
Image: 126
Initial error: 0.2169
Final error: 0.0250
Image: 127
Initial error: 0.0602
Final error: 0.0532
Image: 128
Initial error: 0.0877
Final error: 0.0542
Image: 129
Initial error: 0.1520
Final error: 0.1757
Image: 130
Initial error: 0.1036
Final error: 0.0222
Image: 131
Initial error: 0.1785
Final error: 0.1461
Image: 132
Initial error: 0.1500
Final error: 0.0259
Image: 133
Initial error: 0.1255
Final error: 0.0640
Image: 134
Initial error: 0.1118
Final error: 0.0227
Image: 135
Initial error: 0.1121
Final error: 0.0470
Image: 136
Initial error: 0.2011
Final error: 0.0401
Image: 137
Initial error: 0.0632
Final error: 0.0364
Image: 138
Initial error: 0.1907
Final error: 0.1719
Image: 139
Initial error: 0.1717
Final error: 0.0231
Image: 140
Initial error: 0.1810
Final error: 0.1464
Image: 141
Initial error: 0.1418
Final error: 0.0362
Image: 142
Initial error: 0.1339
Final error: 0.0376
Image: 143
Initial error: 0.1093
Final error: 0.0508
Image: 144
Initial error: 0.1221
Final error: 0.0302
Image: 145
Initial error: 0.1485
Final error: 0.0501
Image: 146
Initial error: 0.1633
Final error: 0.0756
Image: 147
Initial error: 0.0487
Final error: 0.0283
Image: 148
Initial error: 0.0864
Final error: 0.0356
Image: 149
Initial error: 0.1623
Final error: 0.0541
Image: 150
Initial error: 0.1255
Final error: 0.0474
Image: 151
Initial error: 0.1928
Final error: 0.1229
Image: 152
Initial error: 0.1197
Final error: 0.0323
Image: 153
Initial error: 0.1100
Final error: 0.0400
Image: 154
Initial error: 0.1213
Final error: 0.0662
Image: 155
Initial error: 0.1632
Final error: 0.0463
Image: 156
Initial error: 0.1736
Final error: 0.0360
Image: 157
Initial error: 0.1291
Final error: 0.0661
Image: 158
Initial error: 0.0720
Final error: 0.0239
Image: 159
Initial error: 0.1199
Final error: 0.0549
Image: 160
Initial error: 0.1569
Final error: 0.0465
Image: 161
Initial error: 0.1061
Final error: 0.0335
Image: 162
Initial error: 0.1884
Final error: 0.0986
Image: 163
Initial error: 0.0689
Final error: 0.0476
Image: 164
Initial error: 0.0830
Final error: 0.0228
Image: 165
Initial error: 0.0618
Final error: 0.0182
Image: 166
Initial error: 0.0975
Final error: 0.0206
Image: 167
Initial error: 0.2169
Final error: 0.0283
Image: 168
Initial error: 0.1002
Final error: 0.0400
Image: 169
Initial error: 0.1054
Final error: 0.0265
Image: 170
Initial error: 0.1108
Final error: 0.0659
Image: 171
Initial error: 0.1580
Final error: 0.0346
Image: 172
Initial error: 0.1476
Final error: 0.0284
Image: 173
Initial error: 0.0963
Final error: 0.1398
Image: 174
Initial error: 0.1308
Final error: 0.0309
Image: 175
Initial error: 0.0971
Final error: 0.0430
Image: 176
Initial error: 0.0800
Final error: 0.0418
Image: 177
Initial error: 0.1530
Final error: 0.3077
Image: 178
Initial error: 0.1115
Final error: 0.0348
Image: 179
Initial error: 0.1162
Final error: 0.0312
Image: 180
Initial error: 0.0532
Final error: 0.0471
Image: 181
Initial error: 0.1252
Final error: 0.0329
Image: 182
Initial error: 0.0644
Final error: 0.0363
Image: 183
Initial error: 0.1919
Final error: 0.0334
Image: 184
Initial error: 0.1198
Final error: 0.0702
Image: 185
Initial error: 0.0981
Final error: 0.0547
Image: 186
Initial error: 0.1389
Final error: 0.0277
Image: 187
Initial error: 0.2075
Final error: 0.0261
Image: 188
Initial error: 0.1509
Final error: 0.0277
Image: 189
Initial error: 0.0969
Final error: 0.0171
Image: 190
Initial error: 0.1343
Final error: 0.0206
Image: 191
Initial error: 0.1542
Final error: 0.0493
Image: 192
Initial error: 0.1105
Final error: 0.0254
Image: 193
Initial error: 0.1773
Final error: 0.0312
Image: 194
Initial error: 0.0755
Final error: 0.0485
Image: 195
Initial error: 0.1753
Final error: 0.2589
Image: 196
Initial error: 0.0954
Final error: 0.0332
Image: 197
Initial error: 0.1211
Final error: 0.0387
Image: 198
Initial error: 0.1498
Final error: 0.0855
Image: 199
Initial error: 0.2054
Final error: 0.1022
Image: 200
Initial error: 0.0402
Final error: 0.0336
Image: 201
Initial error: 0.0563
Final error: 0.0259
Image: 202
Initial error: 0.1061
Final error: 0.0259
Image: 203
Initial error: 0.1475
Final error: 0.0248
Image: 204
Initial error: 0.0853
Final error: 0.0495
Image: 205
Initial error: 0.1535
Final error: 0.0299
Image: 206
Initial error: 0.1282
Final error: 0.0549
Image: 207
Initial error: 0.1849
Final error: 0.2298
Image: 208
Initial error: 0.1432
Final error: 0.0432
Image: 209
Initial error: 0.0608
Final error: 0.0424
Image: 210
Initial error: 0.1488
Final error: 0.0569
Image: 211
Initial error: 0.0441
Final error: 0.0265
Image: 212
Initial error: 0.1670
Final error: 0.0360
Image: 213
Initial error: 0.1190
Final error: 0.0376
Image: 214
Initial error: 0.1274
Final error: 0.0517
Image: 215
Initial error: 0.0845
Final error: 0.0388
Image: 216
Initial error: 0.0577
Final error: 0.0550
Image: 217
Initial error: 0.1004
Final error: 0.0505
Image: 218
Initial error: 0.1002
Final error: 0.0201
Image: 219
Initial error: 0.1394
Final error: 0.0284
Image: 220
Initial error: 0.0483
Final error: 0.0524
Image: 221
Initial error: 0.0779
Final error: 0.0447
Image: 222
Initial error: 0.1936
Final error: 0.0899
Image: 223
Initial error: 0.1880
Final error: 0.0670
Image: 224
Initial error: 0.1272
Final error: 0.0283
Image: 225
Initial error: 0.1701
Final error: 0.0285
Image: 226
Initial error: 0.2303
Final error: 0.1327
Image: 227
Initial error: 0.1417
Final error: 0.0278
Image: 228
Initial error: 0.1365
Final error: 0.0611
Image: 229
Initial error: 0.0500
Final error: 0.0193
Image: 230
Initial error: 0.2228
Final error: 0.1222
Image: 231
Initial error: 0.1710
Final error: 0.0382
Image: 232
Initial error: 0.1581
Final error: 0.1939
Image: 233
Initial error: 0.1730
Final error: 0.0417
Image: 234
Initial error: 0.1757
Final error: 0.0561
Image: 235
Initial error: 0.2150
Final error: 0.1152
Image: 236
Initial error: 0.0897
Final error: 0.0338
Image: 237
Initial error: 0.1069
Final error: 0.0211
Image: 238
Initial error: 0.0798
Final error: 0.0422
Image: 239
Initial error: 0.1332
Final error: 0.0504
Image: 240
Initial error: 0.0845
Final error: 0.0271
Image: 241
Initial error: 0.1385
Final error: 0.0324
Image: 242
Initial error: 0.1196
Final error: 0.0343
Image: 243
Initial error: 0.1181
Final error: 0.0370
Image: 244
Initial error: 0.0739
Final error: 0.0316
Image: 245
Initial error: 0.2007
Final error: 0.1559
Image: 246
Initial error: 0.1263
Final error: 0.0690
Image: 247
Initial error: 0.0679
Final error: 0.0525
Image: 248
Initial error: 0.1160
Final error: 0.0373
Image: 249
Initial error: 0.1809
Final error: 0.0596
Image: 250
Initial error: 0.0857
Final error: 0.0379
Image: 251
Initial error: 0.1399
Final error: 0.0442
Image: 252
Initial error: 0.1658
Final error: 0.0331
Image: 253
Initial error: 0.0934
Final error: 0.0274
Image: 254
Initial error: 0.1092
Final error: 0.1374
Image: 255
Initial error: 0.0671
Final error: 0.0251
Image: 256
Initial error: 0.1590
Final error: 0.0307
Image: 257
Initial error: 0.0474
Final error: 0.0304
Image: 258
Initial error: 0.1141
Final error: 0.0288
Image: 259
Initial error: 0.2288
Final error: 0.0801
Image: 260
Initial error: 0.2038
Final error: 0.1109
Image: 261
Initial error: 0.0449
Final error: 0.0258
Image: 262
Initial error: 0.1168
Final error: 0.0311
Image: 263
Initial error: 0.1009
Final error: 0.0493
Image: 264
Initial error: 0.1506
Final error: 0.1323
Image: 265
Initial error: 0.0329
Final error: 0.0397
Image: 266
Initial error: 0.0395
Final error: 0.0293
Image: 267
Initial error: 0.1076
Final error: 0.0270
Image: 268
Initial error: 0.0802
Final error: 0.0645
Image: 269
Initial error: 0.0700
Final error: 0.0720
Image: 270
Initial error: 0.2035
Final error: 0.0601
Image: 271
Initial error: 0.1157
Final error: 0.0315
Image: 272
Initial error: 0.0658
Final error: 0.0176
Image: 273
Initial error: 0.1080
Final error: 0.0244
Image: 274
Initial error: 0.0964
Final error: 0.0357
Image: 275
Initial error: 0.1078
Final error: 0.0206
Image: 276
Initial error: 0.0474
Final error: 0.0375
Image: 277
Initial error: 0.1275
Final error: 0.0228
Image: 278
Initial error: 0.1897
Final error: 0.0914
Image: 279
Initial error: 0.0558
Final error: 0.0353
Image: 280
Initial error: 0.1083
Final error: 0.0394
Image: 281
Initial error: 0.1548
Final error: 0.0754
Image: 282
Initial error: 0.1325
Final error: 0.0223
Image: 283
Initial error: 0.0937
Final error: 0.0442
Image: 284
Initial error: 0.0618
Final error: 0.0291
Image: 285
Initial error: 0.1458
Final error: 0.0350
Image: 286
Initial error: 0.0591
Final error: 0.0210
Image: 287
Initial error: 0.0842
Final error: 0.0210
Image: 288
Initial error: 0.1267
Final error: 0.0350
Image: 289
Initial error: 0.1257
Final error: 0.0301
Image: 290
Initial error: 0.0738
Final error: 0.0297
Image: 291
Initial error: 0.1325
Final error: 0.2274
Image: 292
Initial error: 0.0897
Final error: 0.0246
Image: 293
Initial error: 0.0670
Final error: 0.0302
Image: 294
Initial error: 0.0917
Final error: 0.0254
Image: 295
Initial error: 0.0747
Final error: 0.0292
Image: 296
Initial error: 0.0768
Final error: 0.0212
Image: 297
Initial error: 0.1124
Final error: 0.0428
Image: 298
Initial error: 0.1395
Final error: 0.0340
Image: 299
Initial error: 0.0952
Final error: 0.0327
Image: 300
Initial error: 0.0443
Final error: 0.0331
Image: 301
Initial error: 0.1195
Final error: 0.0254
Image: 302
Initial error: 0.1256
Final error: 0.0356
Image: 303
Initial error: 0.0674
Final error: 0.0434
Image: 304
Initial error: 0.0891
Final error: 0.0443
Image: 305
Initial error: 0.0607
Final error: 0.0356
Image: 306
Initial error: 0.0762
Final error: 0.0339
Image: 307
Initial error: 0.0390
Final error: 0.0569
Image: 308
Initial error: 0.2159
Final error: 0.0830
Image: 309
Initial error: 0.0603
Final error: 0.0240
Image: 310
Initial error: 0.1415
Final error: 0.0402
Image: 311
Initial error: 0.0542
Final error: 0.0712
Image: 312
Initial error: 0.0906
Final error: 0.0368
Image: 313
Initial error: 0.0804
Final error: 0.0465
Image: 314
Initial error: 0.1737
Final error: 0.0352
Image: 315
Initial error: 0.1567
Final error: 0.0518
Image: 316
Initial error: 0.1774
Final error: 0.0944
Image: 317
Initial error: 0.1453
Final error: 0.0243
Image: 318
Initial error: 0.1510
Final error: 0.0254
Image: 319
Initial error: 0.0827
Final error: 0.0486
Image: 320
Initial error: 0.0836
Final error: 0.0292
Image: 321
Initial error: 0.0788
Final error: 0.0265
Image: 322
Initial error: 0.0683
Final error: 0.0383
Image: 323
Initial error: 0.1261
Final error: 0.0706
Image: 324
Initial error: 0.1481
Final error: 0.0353
Image: 325
Initial error: 0.0809
Final error: 0.0481
Image: 326
Initial error: 0.1241
Final error: 0.0648
Image: 327
Initial error: 0.0524
Final error: 0.0151
Image: 328
Initial error: 0.0725
Final error: 0.0265
Image: 329
Initial error: 0.1324
Final error: 0.0326
Image: 330
Initial error: 0.0753
Final error: 0.0254
Image: 331
Initial error: 0.0441
Final error: 0.0370
Image: 332
Initial error: 0.0566
Final error: 0.0560
Image: 333
Initial error: 0.1139
Final error: 0.0190
Image: 334
Initial error: 0.0824
Final error: 0.0272
Image: 335
Initial error: 0.0819
Final error: 0.0294
Image: 336
Initial error: 0.0859
Final error: 0.0257
Image: 337
Initial error: 0.2034
Final error: 0.1123
Image: 338
Initial error: 0.0722
Final error: 0.0482
Image: 339
Initial error: 0.1232
Final error: 0.0223
Image: 340
Initial error: 0.0748
Final error: 0.0278
Image: 341
Initial error: 0.0740
Final error: 0.0318
Image: 342
Initial error: 0.1161
Final error: 0.0345
Image: 343
Initial error: 0.1158
Final error: 0.0170
Image: 344
Initial error: 0.1199
Final error: 0.0523
Image: 345
Initial error: 0.1984
Final error: 0.1196
Image: 346
Initial error: 0.0439
Final error: 0.0444
Image: 347
Initial error: 0.0689
Final error: 0.0337
Image: 348
Initial error: 0.0739
Final error: 0.0276
Image: 349
Initial error: 0.0555
Final error: 0.0402
Image: 350
Initial error: 0.1362
Final error: 0.0287
Image: 351
Initial error: 0.0440
Final error: 0.0256
Image: 352
Initial error: 0.0788
Final error: 0.0471
Image: 353
Initial error: 0.1450
Final error: 0.0343
Image: 354
Initial error: 0.0965
Final error: 0.0472
Image: 355
Initial error: 0.0527
Final error: 0.0920
Image: 356
Initial error: 0.0737
Final error: 0.0230
Image: 357
Initial error: 0.2208
Final error: 0.0836
Image: 358
Initial error: 0.0736
Final error: 0.0346
Image: 359
Initial error: 0.1433
Final error: 0.0363
Image: 360
Initial error: 0.0562
Final error: 0.0483
Image: 361
Initial error: 0.1793
Final error: 0.0261
Image: 362
Initial error: 0.1413
Final error: 0.0404
Image: 363
Initial error: 0.0653
Final error: 0.0980
Image: 364
Initial error: 0.1447
Final error: 0.0537
Image: 365
Initial error: 0.1107
Final error: 0.0262
Image: 366
Initial error: 0.0921
Final error: 0.0263
Image: 367
Initial error: 0.0530
Final error: 0.0299
Image: 368
Initial error: 0.1093
Final error: 0.0314
Image: 369
Initial error: 0.0444
Final error: 0.0420
Image: 370
Initial error: 0.1360
Final error: 0.0324
Image: 371
Initial error: 0.1394
Final error: 0.0352
Image: 372
Initial error: 0.0796
Final error: 0.0415
Image: 373
Initial error: 0.1550
Final error: 0.0173
Image: 374
Initial error: 0.1988
Final error: 0.1016
Image: 375
Initial error: 0.1767
Final error: 0.0658
Image: 376
Initial error: 0.1769
Final error: 0.0328
Image: 377
Initial error: 0.1535
Final error: 0.0267
Image: 378
Initial error: 0.0677
Final error: 0.0431
Image: 379
Initial error: 0.1463
Final error: 0.0634
Image: 380
Initial error: 0.1646
Final error: 0.1463
Image: 381
Initial error: 0.0942
Final error: 0.0509
Image: 382
Initial error: 0.0990
Final error: 0.0269
Image: 383
Initial error: 0.1384
Final error: 0.0306
Image: 384
Initial error: 0.0973
Final error: 0.0370
Image: 385
Initial error: 0.1129
Final error: 0.0300
Image: 386
Initial error: 0.0595
Final error: 0.0705
Image: 387
Initial error: 0.0579
Final error: 0.0469
Image: 388
Initial error: 0.1683
Final error: 0.1495
Image: 389
Initial error: 0.0694
Final error: 0.0524
Image: 390
Initial error: 0.1295
Final error: 0.1710
Image: 391
Initial error: 0.0731
Final error: 0.0266
Image: 392
Initial error: 0.1297
Final error: 0.1505
Image: 393
Initial error: 0.0529
Final error: 0.0234
Image: 394
Initial error: 0.0804
Final error: 0.0271
Image: 395
Initial error: 0.1809
Final error: 0.0388
Image: 396
Initial error: 0.1456
Final error: 0.0280
Image: 397
Initial error: 0.1298
Final error: 0.0802
Image: 398
Initial error: 0.1081
Final error: 0.0245
Image: 399
Initial error: 0.1478
Final error: 0.0672
Image: 400
Initial error: 0.0678
Final error: 0.0238
Image: 401
Initial error: 0.0719
Final error: 0.0213
Image: 402
Initial error: 0.1275
Final error: 0.0548
Image: 403
Initial error: 0.1354
Final error: 0.1060
Image: 404
Initial error: 0.1277
Final error: 0.0388
Image: 405
Initial error: 0.1451
Final error: 0.0305
Image: 406
Initial error: 0.0704
Final error: 0.0357
Image: 407
Initial error: 0.0865
Final error: 0.0387
Image: 408
Initial error: 0.1185
Final error: 0.0235
Image: 409
Initial error: 0.1144
Final error: 0.0343
Image: 410
Initial error: 0.1012
Final error: 0.0345
Image: 411
Initial error: 0.0942
Final error: 0.0397
Image: 412
Initial error: 0.0580
Final error: 0.0174
Image: 413
Initial error: 0.1524
Final error: 0.0367
Image: 414
Initial error: 0.0916
Final error: 0.0253
Image: 415
Initial error: 0.1738
Final error: 0.0278
Image: 416
Initial error: 0.0628
Final error: 0.0280
Image: 417
Initial error: 0.1059
Final error: 0.0433
Image: 418
Initial error: 0.0642
Final error: 0.0258
Image: 419
Initial error: 0.0799
Final error: 0.0246
Image: 420
Initial error: 0.1781
Final error: 0.1289
In [18]:
from menpofit.visualize import visualize_fitting_results
visualize_fitting_results(fitter_results)
In [19]:
from alabortcvpr2015.utils import pickle_dump
from alabortcvpr2015.result import SerializableResult
results = [SerializableResult('none', fr.final_shape, fr.n_iters, 'PIC', fr.gt_shape)
for fr in fitter_results]
pickle_dump(results, '/data/PhD/Results/aam_pic_view1_fast_dsift')
In [20]:
%timeit fitter.fit(i, s, gt_shape=gt_s, max_iters=20)
10 loops, best of 3: 36.8 ms per loop
In [ ]:
#import line_profiler
#import IPython
#ip = IPython.get_ipython()
#ip.define_magic('lprun', line_profiler.magic_lprun)
In [ ]:
#from alabortcvpr2015.aam import PIC
#%lprun -f PIC.run fitter.fit(i, s, gt_shape=gt_s, max_iters=20)
Content source: jalabort/alabortcvpr2015
Similar notebooks: