In [ ]:


In [2]:
import pandas as pd
import numpy as np

In [3]:
%run -i readData.py


Shape aisles: (134, 2)
Shape departments: (21, 2)
Shape order_products__prior: (32434489, 4)
Shape order_products__train: (1384617, 4)
Shape orders: (3421083, 7)
Shape products: (49688, 4)

In [14]:
allDsCombine = [aisles, departments, order_products__prior,order_products__train, orders, products]

In [30]:
#print all datasets
for ds in allDsCombine:
    print(ds.head())
    print("-"*100)


   aisle_id                       aisle
0         1       prepared soups salads
1         2           specialty cheeses
2         3         energy granola bars
3         4               instant foods
4         5  marinades meat preparation
----------------------------------------------------------------------------------------------------
   department_id department
0              1     frozen
1              2      other
2              3     bakery
3              4    produce
4              5    alcohol
----------------------------------------------------------------------------------------------------
   order_id  product_id  add_to_cart_order  reordered
0         2       33120                  1          1
1         2       28985                  2          1
2         2        9327                  3          0
3         2       45918                  4          1
4         2       30035                  5          0
----------------------------------------------------------------------------------------------------
   order_id  product_id  add_to_cart_order  reordered
0         1       49302                  1          1
1         1       11109                  2          1
2         1       10246                  3          0
3         1       49683                  4          0
4         1       43633                  5          1
----------------------------------------------------------------------------------------------------
   order_id  user_id eval_set  order_number  order_dow  order_hour_of_day  \
0   2539329        1    prior             1          2                  8   
1   2398795        1    prior             2          3                  7   
2    473747        1    prior             3          3                 12   
3   2254736        1    prior             4          4                  7   
4    431534        1    prior             5          4                 15   

   days_since_prior_order  
0                     NaN  
1                    15.0  
2                    21.0  
3                    29.0  
4                    28.0  
----------------------------------------------------------------------------------------------------
   product_id                                       product_name  aisle_id  \
0           1                         Chocolate Sandwich Cookies        61   
1           2                                   All-Seasons Salt       104   
2           3               Robust Golden Unsweetened Oolong Tea        94   
3           4  Smart Ones Classic Favorites Mini Rigatoni Wit...        38   
4           5                          Green Chile Anytime Sauce         5   

   department_id  
0             19  
1             13  
2              7  
3              1  
4             13  
----------------------------------------------------------------------------------------------------

In [ ]: