In [1]:
"""Mainly Edited for private usage by:  Ioanna Mitsioni
                                        Ioannis Agriomallos
License: BSD 3 clause
"""
import time
start_time = time.time()
from copy import deepcopy, copy
import math
import scipy.io as sio
import shutil
import os
from random import shuffle
import numpy as np
from pylab import *
# from featext2 import *
import matplotlib.pyplot as plt
%matplotlib inline 
#matplotlib qt
# inline (suitable for ipython only, shown inside browser!) or qt (suitable in general, shown in external window!)
from matplotlib.colors import ListedColormap
from mpl_toolkits.mplot3d import Axes3D #, axes3d
from sklearn.preprocessing import StandardScaler, MinMaxScaler, normalize
from sklearn.decomposition import PCA
from sklearn.manifold import TSNE
from sklearn.neural_network import MLPClassifier
from sklearn.feature_selection import SelectFromModel, SelectKBest, mutual_info_classif
from sklearn.pipeline import Pipeline
from sklearn.metrics import classification_report, confusion_matrix
from collections import OrderedDict
import re
import datetime
import urllib
import tarfile
# import joblib
# from joblib import Parallel, delayed, Memory
from tempfile import mkdtemp
import copy_reg
import types
import itertools
from itertools import compress
from collections import Counter
import glob

#import multiprocessing
def _pickle_method(m):
    if m.im_self is None:
        return getattr, (m.im_class, m.im_func.func_name)
    else:
        return getattr, (m.im_self, m.im_func.func_name)
copy_reg.pickle(types.MethodType, _pickle_method)


h = .2  # step size in the mesh
window = 1024

In [2]:
############ Feature Names ############
"""features:                                                                       ||      if       
   |--> time domain      :                                                         || samples = 1024
   |----|---> phinyomark : 11+3{shist} --------------------------> = 14+0.0samples ||             14
   |----|---> golz       : 10+samples{acrol} --------------------> = 10+1.0samples ||           1034
   |--> frequency domain :                                                                          
   |----|---> phinyomark : 3{arco}+4{mf}+2(samples/2+1){RF,IF} --> =  9+1.0samples ||           1033
   |----|---> golz       : 2(samples/2+1){AF,PF} ----------------> =  2+1.0samples ||           1026
   |----|----------------|-------alltogether---------------------> = 35+3.0samples || numfeat = 3107
"""
## Time Domain Phinyomark feats
featnames = ['intsgnl', 'meanabs', 'meanabsslp', 'ssi', 'var', 'rms', 'rng', 'wavl', 'zerox', 'ssc', 'wamp', 
             'shist1', 'shist2', 'shist3']                                                   # 11+3{shist}
## Frequency Domain Phinyomark feats
featnames += ['arco1', 'arco2', 'arco3', 'mnf', 'mdf', 'mmnf', 'mmdf']                       # 3{arco}+4{mf}
featnames += ['reFFT{:03d}'.format(i) for i in range(window/2+1)]                            # samples/2+1{RF}
featnames += ['imFFT{:03d}'.format(i) for i in range(window/2+1)]                            # samples/2+1{IF}
## Time Domain Golz feats
featnames += ['meanv', 'stdr', 'mx', 'rngx', 'rngy', 'med', 'hjorth', 'sentr', 'se', 'ssk']  # 10
featnames += ['acrol{:04d}'.format(i) for i in range(window)]                                # samples{acrol}
## Frequency Domain Golz feats
featnames += ['amFFT{:03d}'.format(i) for i in range(window/2+1)]                            # samples/2+1{AF}
featnames += ['phFFT{:03d}'.format(i) for i in range(window/2+1)]                            # samples/2+1{PF}

In [3]:
############ Prepare the indeces for each feature ############
def get_feat_id(feat_ind, printit=0, sample_window=window): 
    """Find the corresponding indeces of the desired features inside feature vector,
    and link them with their names and level of abstraction
    -> feat_ind        : range of indeces
    -> printit         : print output indeces (1) or not (0)
    -> sample_window   : parameter for accurate computation of feature indeces
    <- full_path_id    : indeces of all features
    <- norm_time_feats : indeces of time features
    <- norm_freq_feats : indeces of frequency features
    """
    # get the feat inds wrt their source : 3rd level
    norm_time_phin = range(0,14)
    norm_freq_phin = range(norm_time_phin[-1] + 1, norm_time_phin[-1] + 9 + sample_window + 1)
    norm_time_golz = range(norm_freq_phin[-1] + 1, norm_freq_phin[-1] + 10 + sample_window + 1)
    norm_freq_golz = range(norm_time_golz[-1] + 1, norm_time_golz[-1] + 2 + sample_window + 1)
    # get the feat inds wrt their domain : 2nd level 
    norm_time_feats = norm_time_phin + norm_time_golz
    norm_freq_feats = norm_freq_phin + norm_freq_golz
    # get the feat inds wrt their prefeat: 1st level 
    norm_feats = norm_time_feats + norm_freq_feats

    # get the feat inds wrt their source : 3rd level
    disp = norm_feats[-1]+1
    ftfn_time_phin = range(disp ,disp + 14)
    ftfn_freq_phin = range(ftfn_time_phin[-1] + 1, ftfn_time_phin[-1] + 9 + sample_window + 1)
    ftfn_time_golz = range(ftfn_freq_phin[-1] + 1, ftfn_freq_phin[-1] + 10 + sample_window + 1)
    ftfn_freq_golz = range(ftfn_time_golz[-1] + 1, ftfn_time_golz[-1] + 2 + sample_window + 1)
    # get the feat inds wrt their domain : 2nd level 
    ftfn_time_feats = ftfn_time_phin + ftfn_time_golz
    ftfn_freq_feats = ftfn_freq_phin + ftfn_freq_golz
    # get the feat inds wrt their prefeat: 1st level 
    ftfn_feats = ftfn_time_feats + ftfn_freq_feats

    # create the final "reference dictionary"
    # 3 np.arrays, id_list[0] = level 1 etc
    id_list = [np.zeros((len(ftfn_feats + norm_feats),1)) for i in range(3)]
    id_list[0][:norm_feats[-1]+1] = 0 # 0 signifies norm / 1 signifies ft/fn
    id_list[0][norm_feats[-1]+1:] = 1

    id_list[1][:norm_time_phin[-1]+1] = 0 # 0 signifies time / 1 signifies freq
    id_list[1][norm_time_phin[-1]+1:norm_freq_phin[-1]+1] = 1
    id_list[1][norm_freq_phin[-1]+1:norm_time_golz[-1]+1] = 0
    id_list[1][norm_time_golz[-1]+1:norm_freq_golz[-1]+1] = 1
    id_list[1][norm_freq_golz[-1]+1:ftfn_time_phin[-1]+1] = 0
    id_list[1][ftfn_time_phin[-1]+1:ftfn_freq_phin[-1]+1] = 1
    id_list[1][ftfn_freq_phin[-1]+1:ftfn_time_golz[-1]+1] = 0
    id_list[1][ftfn_time_golz[-1]+1:] = 1

    id_list[2][:norm_freq_phin[-1]+1] = 0 #0 signifies phinyomark / 1 signifies golz
    id_list[2][norm_freq_phin[-1]+1:norm_freq_golz[-1]+1] = 1
    id_list[2][norm_freq_golz[-1]+1:ftfn_freq_phin[-1]+1] = 0
    id_list[2][ftfn_freq_phin[-1]+1:] = 1 
    
    full_path_id = [np.zeros((len(feat_ind),5)) for i in range(len(feat_ind))]
   
    for ind, val in enumerate(feat_ind):
        full_path_id[ind] = [val, id_list[2][val], id_list[1][val], id_list[0][val]]
        if (printit==1):
            if(full_path_id[ind][1]==0):
                lvl3 = 'Phin'
            else:
                lvl3 = 'Golz'
            if(full_path_id[ind][2]==0):
                lvl2 = 'Time'
            else:
                lvl2 = 'Freq'
            if(full_path_id[ind][3]==0):
                lvl1 = 'Norm'
            else:
                lvl1 = 'Ft/Fn'
            print(feat_ind[ind],featnames[val%(norm_feats[-1]+1)],lvl3,lvl2,lvl1)
    
    return(full_path_id,norm_time_feats,norm_freq_feats)

In [4]:
def subfeat_inds(ofs=len(featnames)):
    """returns a subfeatures' indeces
    -> ofs                     : number of features in total
    <- amfft, freq, time, both : split featureset indeces for 
                                 amplitude of FFT, all time only,
                                 all frequency only and all features
    """
    _,time,freq = get_feat_id(range(ofs))
    both = range(ofs)
    amfft = []
    for i in range(len(featnames)):
        if (featnames[i].startswith('amFFT')):
            amfft.append(i)
    return amfft, freq, time, both

In [69]:
def get_tot_feats(fs, subfs, r):
     ###############################################################################################################
    # Version 2, using the bool masks and keeping an array of 6x3000 feats 
    ###############################################################################################################
    # If checking for FnormAll, you end up with 36 models of (trained_on, tested_on) combinations but TECHNICALLY
    # the features are the same for every trained_on "sixplet" so there's no need to iterate over all the tested_on
    # indeces. Therefore, ts = 2 is chosen arbitrarily 
    
#     filenames = glob.glob("data/results" + str(r) + "/fs_" + str(fs) + "_subfs_" + str(subfs) + "_*.npz")
    filenames = glob.glob("data/results" + str(r) + "/fs_" + str(fs) + "_subfs_" + str(subfs) + "_tr_" + str(0) + "_ts_" + str(5) + ".npz")
    print filenames
    # the features kept for surface i will be stored in bool_tot_feats[i] (final size: 6x1000)
    bool_tot_feats = []
    best_tot_feats = []
    best_tot_scores = []
    
    for filn in filenames:
        # for every training surface     
        model_file = np.load(filn)
        model = model_file['model']
        #keep a list of the 1000 features kept
        model_feat_scores = model[0].named_steps['feature_selection'].scores_
        bool_model_features = list(model[0].named_steps['feature_selection'].get_support(indices = False))
        if subfs<=2:
            bool_model_features = np.logical_not(np.array(bool_model_features))
            bool_model_features[np.array(model_feat_scores).argsort()[-1000:][::-1].tolist()] = True
            bool_model_features = bool_model_features.tolist()
#         plt.plot(model_feat_scores)
        bool_tot_feats.append(bool_model_features)
        best_tot_scores.append(np.array(model_feat_scores[np.array(model_feat_scores).argsort()[-1000:][::-1].tolist()]))
        best_tot_feats.append(np.array(model_feat_scores).argsort()[-1000:][::-1])
        
    return bool_tot_feats, best_tot_feats, best_tot_scores

In [56]:
def get_tot_feats_importance_pca(fs, subfs, r):
     ###############################################################################################################
    # Version 2, using the bool masks and keeping an array of 6x3000 feats 
    ###############################################################################################################
    # If checking for FnormAll, you end up with 36 models of (trained_on, tested_on) combinations but TECHNICALLY
    # the features are the same for every trained_on "sixplet" so there's no need to iterate over all the tested_on
    # indeces. Therefore, ts = 2 is chosen arbitrarily 
    
#     filenames = glob.glob("data/results" + str(r) + "/fs_" + str(fs) + "_subfs_" + str(subfs) + "_*.npz")
    filenames = glob.glob("data/results" + str(r) + "/fs_" + str(fs) + "_subfs_" + str(subfs) + "_tr_" + str(0) + "_ts_" + str(5) + ".npz")
    print filenames
    # the features kept for surface i will be stored in bool_tot_feats[i] (final size: 6x1000)
    bool_tot_feats = []
    best_tot_feats = []
    best_tot_scores = []
    
    for filn in filenames:
        # for every training surface     
        model_file = np.load(filn)
        model = model_file['model'][0]
        #keep a list of the 1000 features kept
        
        model_pca_var = model[0].named_steps['decomp'].explained_variance_
        model_pca_var_rat = model[0].named_steps['decomp'].explained_variance_ratio_
        model_pca_covar = model[0].named_steps['decomp'].get_covariance()
        model_pca_mean = model[0].named_steps['decomp'].mean_
        n_comp = model[0].named_steps['decomp'].n_components_
        comp = model[0].named_steps['decomp'].components_
        print len(model_pca_var), model_pca_var
        print len(model_pca_var_rat), model_pca_var_rat
        print model_pca_covar.shape, model_pca_covar
        # plt.imshow(model_pca_covar)
        print len(model_pca_mean), model_pca_mean
        print n_comp
        print comp.shape, comp
        nfeat = 1000
        feat_importance = np.zeros(nfeat)
        for nc in range(len(comp)):
            feat_importance += comp[nc]*model_pca_var_rat[nc]
        #     plt.plot(range(1000),comp[nc]*model_pca_var_rat[nc])
        plt.plot(range(nfeat),feat_importance/nfeat)
        print feat_importance*nfeat
        sort_feat_imp_ind = np.array(feat_importance).argsort()[:][::-1]
        print np.array(featnames)[sort_feat_imp_ind]
        
        
        model_feat_scores = model[0].named_steps['feature_selection'].scores_
        bool_model_features = list(model[0].named_steps['feature_selection'].get_support(indices = False))
        if subfs<=2:
            bool_model_features = np.logical_not(np.array(bool_model_features))
            bool_model_features[np.array(model_feat_scores).argsort()[-1000:][::-1].tolist()] = True
            bool_model_features = bool_model_features.tolist()
#         plt.plot(model_feat_scores)
        bool_tot_feats.append(bool_model_features)
        best_tot_scores.append(np.array(model_feat_scores[np.array(model_feat_scores).argsort()[-1000:][::-1].tolist()]))
        best_tot_feats.append(np.array(model_feat_scores).argsort()[-1000:][::-1])
        
    return bool_tot_feats, best_tot_feats, best_tot_scores

In [7]:
def freq_time_counter(full_names, subfs):
    f_c = 0; t_c = 0
    for i in range(len(full_names)):
        if full_names[i][2] == 1:
            if subfs!=2:
                f_c += 1
        else:
            if subfs>=2:
                t_c += 1
    return (f_c, t_c)

In [8]:
def get_common_feats(bool_tot_feats, subfs, skip_surf = 6, print_common_feats = 0):   
    # skip_surf = 6 by default so you won't skip any surfaces.
    # returns the list of inds for the common feats
    trans_test_bools = []

    for i in range(len(bool_tot_feats)):
        if i != skip_surf:
            trans_test_bools.append(bool_tot_feats[i])
        else: 
            continue
            
    trans_test_bools = np.transpose(trans_test_bools)
    common_feats = []
    matches  = []
    for i in range(len(trans_test_bools)):
        matches.append(np.all(trans_test_bools[i]))
    for ind, val in enumerate(matches):
        if val:
            common_feats.append(ind)
    print("===============================================================")       
    print("%d common feats, out of %d total" %(len(common_feats),len(matches)))
    full_names, _, _ = get_feat_id(common_feats, printit = print_common_feats)
    freq_counter, time_counter = freq_time_counter(full_names, subfs)
    print("of which, %d (%.2f%%) were Freq features and %d (%.2f%%) were Time features" %(freq_counter, (float(freq_counter)/len(common_feats))*100, time_counter, (float(time_counter)/len(common_feats))*100 ))

    print("===============================================================")
    
    return common_feats, full_names

In [68]:
def get_inv_pca_feat_imp(r, fs, subfs, commonfeats):
#     filenames = glob.glob("data/results" + str(r) + "/fs_" + str(fs) + "_subfs_" + str(subfs) + "_*.npz")
    filenames = glob.glob("data/results" + str(r) + "/fs_" + str(fs) + "_subfs_" + str(subfs) + "_tr_" + str(0) + "_ts_" + str(5) + ".npz")
    print filenames
    feat_imp = np.zeros(len(commonfeats))
    for filn in filenames:
        # for every training surface
        model_file = np.load(filn)
        # get the corresponding model
        model = model_file['model'][0]
        # get the pca
        pca = model.named_steps['decomp']
        # get from the inverse pca the importance of each feature
        invpca = pca.inverse_transform(np.eye(20))
        # find the corresponding indexes returned by feature selection step
        model_feat_ind = list(model.named_steps['feature_selection'].get_support(indices = True))
        # use the commonfeats indexes to find the corresponding index inside model_feat_ind to reference invpca
        # and add its importance to feat_imp correctly
        for ci in range(len(commonfeats)):
            curr_ind = model_feat_ind.index(commonfeats[ci])
            feat_imp[ci] += np.mean(invpca[:,curr_ind])
    return feat_imp

In [70]:
### Example 
fs=0
subfs=3
for r in range(1,2):
    tot_feats, best_tot_feats, best_tot_scores = get_tot_feats(fs=0, subfs=subfs, r=r)
    common_feats, full_names = get_common_feats(bool_tot_feats=tot_feats, subfs=subfs, skip_surf=6, print_common_feats=0)
    fn = np.array(full_names)
    tmp = fn[:,0].astype(int).tolist()
    print np.array(featnames)[tmp]
    feat_imp = get_inv_pca_feat_imp(r,fs,subfs,common_feats)
#     print feat_imp
    plt.figure(figsize=(20,10))
    feat_imp_sort_ind = np.argsort(feat_imp)[::-1]
    feat_imp_sort = np.sort(feat_imp)[::-1]
    plt.plot(feat_imp_sort)
    for t in range(len(feat_imp_sort_ind)):
        print t, np.array(featnames)[tmp[feat_imp_sort_ind[t]]], feat_imp_sort[t]

#     for j in range(0,len(best_tot_feats),1):
#         tmpj = best_tot_feats[j][:5]
#         print len(tmpj)
#         print j, best_tot_scores[j][:10]
#         print j, np.array(featnames)[tmpj]


['data/results1/fs_0_subfs_3_tr_0_ts_5.npz']
===============================================================
1000 common feats, out of 3107 total
of which, 44 (4.40%) were Freq features and 956 (95.60%) were Time features
===============================================================
['intsgnl' 'meanabs' 'meanabsslp' 'ssi' 'var' 'rms' 'rng' 'mmnf' 'mmdf'
 'reFFT000' 'reFFT001' 'reFFT002' 'reFFT003' 'reFFT004' 'reFFT005'
 'reFFT006' 'reFFT007' 'reFFT008' 'reFFT009' 'reFFT010' 'reFFT011'
 'reFFT012' 'reFFT015' 'reFFT016' 'reFFT017' 'reFFT018' 'imFFT003'
 'imFFT004' 'imFFT006' 'imFFT008' 'imFFT009' 'imFFT010' 'imFFT011'
 'imFFT012' 'imFFT021' 'imFFT023' 'imFFT028' 'imFFT029' 'imFFT034' 'meanv'
 'stdr' 'mx' 'rngy' 'med' 'hjorth' 'se' 'acrol0000' 'acrol0001' 'acrol0002'
 'acrol0003' 'acrol0004' 'acrol0005' 'acrol0006' 'acrol0007' 'acrol0008'
 'acrol0009' 'acrol0010' 'acrol0011' 'acrol0012' 'acrol0013' 'acrol0014'
 'acrol0015' 'acrol0016' 'acrol0017' 'acrol0018' 'acrol0019' 'acrol0020'
 'acrol0021' 'acrol0022' 'acrol0023' 'acrol0024' 'acrol0025' 'acrol0026'
 'acrol0027' 'acrol0028' 'acrol0029' 'acrol0030' 'acrol0031' 'acrol0032'
 'acrol0033' 'acrol0034' 'acrol0035' 'acrol0036' 'acrol0037' 'acrol0038'
 'acrol0039' 'acrol0040' 'acrol0041' 'acrol0042' 'acrol0043' 'acrol0044'
 'acrol0045' 'acrol0046' 'acrol0047' 'acrol0048' 'acrol0049' 'acrol0050'
 'acrol0051' 'acrol0052' 'acrol0053' 'acrol0054' 'acrol0055' 'acrol0056'
 'acrol0057' 'acrol0058' 'acrol0059' 'acrol0060' 'acrol0061' 'acrol0062'
 'acrol0063' 'acrol0064' 'acrol0065' 'acrol0066' 'acrol0067' 'acrol0068'
 'acrol0069' 'acrol0070' 'acrol0071' 'acrol0072' 'acrol0073' 'acrol0074'
 'acrol0075' 'acrol0076' 'acrol0077' 'acrol0078' 'acrol0079' 'acrol0080'
 'acrol0081' 'acrol0082' 'acrol0083' 'acrol0084' 'acrol0085' 'acrol0086'
 'acrol0087' 'acrol0088' 'acrol0089' 'acrol0090' 'acrol0091' 'acrol0092'
 'acrol0093' 'acrol0094' 'acrol0095' 'acrol0096' 'acrol0097' 'acrol0098'
 'acrol0099' 'acrol0100' 'acrol0101' 'acrol0102' 'acrol0103' 'acrol0104'
 'acrol0105' 'acrol0106' 'acrol0107' 'acrol0108' 'acrol0109' 'acrol0110'
 'acrol0111' 'acrol0112' 'acrol0113' 'acrol0114' 'acrol0115' 'acrol0116'
 'acrol0117' 'acrol0118' 'acrol0119' 'acrol0120' 'acrol0121' 'acrol0122'
 'acrol0123' 'acrol0124' 'acrol0125' 'acrol0126' 'acrol0127' 'acrol0128'
 'acrol0129' 'acrol0130' 'acrol0131' 'acrol0132' 'acrol0133' 'acrol0134'
 'acrol0135' 'acrol0136' 'acrol0137' 'acrol0138' 'acrol0139' 'acrol0140'
 'acrol0141' 'acrol0142' 'acrol0143' 'acrol0144' 'acrol0145' 'acrol0146'
 'acrol0147' 'acrol0148' 'acrol0149' 'acrol0150' 'acrol0151' 'acrol0152'
 'acrol0153' 'acrol0154' 'acrol0155' 'acrol0156' 'acrol0157' 'acrol0158'
 'acrol0159' 'acrol0160' 'acrol0161' 'acrol0162' 'acrol0163' 'acrol0164'
 'acrol0165' 'acrol0166' 'acrol0167' 'acrol0168' 'acrol0169' 'acrol0170'
 'acrol0171' 'acrol0172' 'acrol0173' 'acrol0174' 'acrol0175' 'acrol0176'
 'acrol0177' 'acrol0178' 'acrol0179' 'acrol0180' 'acrol0181' 'acrol0182'
 'acrol0183' 'acrol0184' 'acrol0185' 'acrol0186' 'acrol0187' 'acrol0188'
 'acrol0189' 'acrol0190' 'acrol0194' 'acrol0195' 'acrol0196' 'acrol0197'
 'acrol0198' 'acrol0199' 'acrol0200' 'acrol0201' 'acrol0202' 'acrol0203'
 'acrol0204' 'acrol0205' 'acrol0206' 'acrol0208' 'acrol0209' 'acrol0213'
 'acrol0214' 'acrol0215' 'acrol0216' 'acrol0217' 'acrol0218' 'acrol0220'
 'acrol0221' 'acrol0223' 'acrol0224' 'acrol0227' 'acrol0228' 'acrol0229'
 'acrol0230' 'acrol0231' 'acrol0232' 'acrol0233' 'acrol0234' 'acrol0235'
 'acrol0236' 'acrol0237' 'acrol0238' 'acrol0239' 'acrol0240' 'acrol0241'
 'acrol0242' 'acrol0243' 'acrol0244' 'acrol0245' 'acrol0246' 'acrol0247'
 'acrol0248' 'acrol0249' 'acrol0250' 'acrol0251' 'acrol0252' 'acrol0253'
 'acrol0254' 'acrol0255' 'acrol0256' 'acrol0257' 'acrol0258' 'acrol0259'
 'acrol0260' 'acrol0261' 'acrol0262' 'acrol0263' 'acrol0264' 'acrol0265'
 'acrol0266' 'acrol0267' 'acrol0268' 'acrol0269' 'acrol0270' 'acrol0271'
 'acrol0272' 'acrol0273' 'acrol0274' 'acrol0275' 'acrol0276' 'acrol0277'
 'acrol0278' 'acrol0279' 'acrol0280' 'acrol0281' 'acrol0282' 'acrol0283'
 'acrol0284' 'acrol0285' 'acrol0286' 'acrol0287' 'acrol0288' 'acrol0289'
 'acrol0290' 'acrol0291' 'acrol0292' 'acrol0293' 'acrol0294' 'acrol0295'
 'acrol0296' 'acrol0297' 'acrol0298' 'acrol0299' 'acrol0300' 'acrol0301'
 'acrol0302' 'acrol0303' 'acrol0304' 'acrol0305' 'acrol0306' 'acrol0307'
 'acrol0308' 'acrol0309' 'acrol0310' 'acrol0311' 'acrol0312' 'acrol0313'
 'acrol0314' 'acrol0315' 'acrol0316' 'acrol0317' 'acrol0318' 'acrol0319'
 'acrol0320' 'acrol0321' 'acrol0322' 'acrol0323' 'acrol0324' 'acrol0325'
 'acrol0326' 'acrol0327' 'acrol0328' 'acrol0329' 'acrol0330' 'acrol0331'
 'acrol0332' 'acrol0333' 'acrol0334' 'acrol0335' 'acrol0336' 'acrol0337'
 'acrol0338' 'acrol0339' 'acrol0340' 'acrol0341' 'acrol0342' 'acrol0343'
 'acrol0344' 'acrol0345' 'acrol0346' 'acrol0347' 'acrol0348' 'acrol0349'
 'acrol0350' 'acrol0351' 'acrol0352' 'acrol0353' 'acrol0354' 'acrol0355'
 'acrol0356' 'acrol0357' 'acrol0358' 'acrol0359' 'acrol0360' 'acrol0361'
 'acrol0362' 'acrol0363' 'acrol0364' 'acrol0365' 'acrol0366' 'acrol0367'
 'acrol0368' 'acrol0369' 'acrol0370' 'acrol0371' 'acrol0372' 'acrol0373'
 'acrol0374' 'acrol0375' 'acrol0376' 'acrol0377' 'acrol0378' 'acrol0379'
 'acrol0380' 'acrol0381' 'acrol0382' 'acrol0383' 'acrol0384' 'acrol0385'
 'acrol0386' 'acrol0387' 'acrol0388' 'acrol0389' 'acrol0390' 'acrol0391'
 'acrol0392' 'acrol0393' 'acrol0394' 'acrol0395' 'acrol0396' 'acrol0397'
 'acrol0398' 'acrol0399' 'acrol0400' 'acrol0401' 'acrol0402' 'acrol0403'
 'acrol0404' 'acrol0405' 'acrol0406' 'acrol0407' 'acrol0408' 'acrol0409'
 'acrol0410' 'acrol0411' 'acrol0412' 'acrol0413' 'acrol0414' 'acrol0415'
 'acrol0416' 'acrol0417' 'acrol0418' 'acrol0419' 'acrol0420' 'acrol0421'
 'acrol0422' 'acrol0423' 'acrol0424' 'acrol0425' 'acrol0426' 'acrol0427'
 'acrol0428' 'acrol0429' 'acrol0430' 'acrol0431' 'acrol0432' 'acrol0433'
 'acrol0434' 'acrol0435' 'acrol0436' 'acrol0437' 'acrol0438' 'acrol0439'
 'acrol0440' 'acrol0441' 'acrol0442' 'acrol0443' 'acrol0444' 'acrol0445'
 'acrol0446' 'acrol0447' 'acrol0448' 'acrol0449' 'acrol0450' 'acrol0451'
 'acrol0452' 'acrol0453' 'acrol0454' 'acrol0455' 'acrol0458' 'acrol0459'
 'acrol0460' 'acrol0461' 'acrol0462' 'acrol0463' 'acrol0464' 'acrol0465'
 'acrol0466' 'acrol0467' 'acrol0468' 'acrol0469' 'acrol0470' 'acrol0471'
 'acrol0472' 'acrol0473' 'acrol0474' 'acrol0475' 'acrol0476' 'acrol0477'
 'acrol0478' 'acrol0479' 'acrol0480' 'acrol0481' 'acrol0482' 'acrol0483'
 'acrol0484' 'acrol0485' 'acrol0486' 'acrol0487' 'acrol0488' 'acrol0489'
 'acrol0490' 'acrol0491' 'acrol0492' 'acrol0493' 'acrol0494' 'acrol0495'
 'acrol0496' 'acrol0497' 'acrol0498' 'acrol0499' 'acrol0500' 'acrol0501'
 'acrol0502' 'acrol0503' 'acrol0504' 'acrol0505' 'acrol0506' 'acrol0507'
 'acrol0508' 'acrol0509' 'acrol0510' 'acrol0511' 'acrol0512' 'acrol0513'
 'acrol0514' 'acrol0515' 'acrol0516' 'acrol0517' 'acrol0518' 'acrol0519'
 'acrol0520' 'acrol0521' 'acrol0522' 'acrol0523' 'acrol0524' 'acrol0525'
 'acrol0526' 'acrol0527' 'acrol0528' 'acrol0529' 'acrol0530' 'acrol0531'
 'acrol0532' 'acrol0533' 'acrol0534' 'acrol0535' 'acrol0536' 'acrol0537'
 'acrol0538' 'acrol0539' 'acrol0540' 'acrol0541' 'acrol0542' 'acrol0543'
 'acrol0544' 'acrol0545' 'acrol0546' 'acrol0547' 'acrol0548' 'acrol0549'
 'acrol0550' 'acrol0551' 'acrol0552' 'acrol0553' 'acrol0554' 'acrol0555'
 'acrol0556' 'acrol0557' 'acrol0558' 'acrol0559' 'acrol0560' 'acrol0561'
 'acrol0562' 'acrol0563' 'acrol0564' 'acrol0565' 'acrol0566' 'acrol0567'
 'acrol0568' 'acrol0569' 'acrol0570' 'acrol0571' 'acrol0572' 'acrol0573'
 'acrol0574' 'acrol0575' 'acrol0576' 'acrol0577' 'acrol0578' 'acrol0579'
 'acrol0580' 'acrol0581' 'acrol0582' 'acrol0583' 'acrol0584' 'acrol0585'
 'acrol0586' 'acrol0587' 'acrol0588' 'acrol0589' 'acrol0590' 'acrol0591'
 'acrol0592' 'acrol0593' 'acrol0594' 'acrol0595' 'acrol0596' 'acrol0597'
 'acrol0598' 'acrol0599' 'acrol0600' 'acrol0601' 'acrol0602' 'acrol0603'
 'acrol0604' 'acrol0605' 'acrol0606' 'acrol0607' 'acrol0608' 'acrol0609'
 'acrol0610' 'acrol0611' 'acrol0612' 'acrol0613' 'acrol0614' 'acrol0615'
 'acrol0616' 'acrol0617' 'acrol0618' 'acrol0619' 'acrol0620' 'acrol0621'
 'acrol0622' 'acrol0623' 'acrol0624' 'acrol0625' 'acrol0626' 'acrol0627'
 'acrol0628' 'acrol0629' 'acrol0630' 'acrol0631' 'acrol0632' 'acrol0633'
 'acrol0634' 'acrol0635' 'acrol0636' 'acrol0637' 'acrol0638' 'acrol0639'
 'acrol0640' 'acrol0641' 'acrol0642' 'acrol0643' 'acrol0644' 'acrol0645'
 'acrol0646' 'acrol0647' 'acrol0648' 'acrol0649' 'acrol0650' 'acrol0651'
 'acrol0652' 'acrol0653' 'acrol0654' 'acrol0655' 'acrol0656' 'acrol0657'
 'acrol0658' 'acrol0659' 'acrol0660' 'acrol0661' 'acrol0662' 'acrol0663'
 'acrol0664' 'acrol0665' 'acrol0666' 'acrol0667' 'acrol0668' 'acrol0669'
 'acrol0670' 'acrol0671' 'acrol0672' 'acrol0673' 'acrol0674' 'acrol0675'
 'acrol0676' 'acrol0677' 'acrol0678' 'acrol0679' 'acrol0680' 'acrol0681'
 'acrol0682' 'acrol0683' 'acrol0684' 'acrol0685' 'acrol0686' 'acrol0687'
 'acrol0688' 'acrol0689' 'acrol0690' 'acrol0691' 'acrol0692' 'acrol0693'
 'acrol0694' 'acrol0695' 'acrol0696' 'acrol0697' 'acrol0698' 'acrol0699'
 'acrol0700' 'acrol0701' 'acrol0702' 'acrol0703' 'acrol0704' 'acrol0705'
 'acrol0706' 'acrol0707' 'acrol0708' 'acrol0709' 'acrol0710' 'acrol0711'
 'acrol0712' 'acrol0713' 'acrol0714' 'acrol0715' 'acrol0716' 'acrol0717'
 'acrol0718' 'acrol0719' 'acrol0720' 'acrol0721' 'acrol0722' 'acrol0723'
 'acrol0724' 'acrol0725' 'acrol0726' 'acrol0727' 'acrol0728' 'acrol0729'
 'acrol0730' 'acrol0731' 'acrol0732' 'acrol0733' 'acrol0734' 'acrol0735'
 'acrol0736' 'acrol0737' 'acrol0738' 'acrol0739' 'acrol0740' 'acrol0741'
 'acrol0742' 'acrol0743' 'acrol0744' 'acrol0745' 'acrol0746' 'acrol0747'
 'acrol0748' 'acrol0749' 'acrol0750' 'acrol0751' 'acrol0752' 'acrol0753'
 'acrol0754' 'acrol0755' 'acrol0756' 'acrol0757' 'acrol0758' 'acrol0759'
 'acrol0760' 'acrol0761' 'acrol0762' 'acrol0763' 'acrol0764' 'acrol0765'
 'acrol0766' 'acrol0768' 'acrol0769' 'acrol0780' 'acrol0785' 'acrol0786'
 'acrol0787' 'acrol0788' 'acrol0789' 'acrol0790' 'acrol0791' 'acrol0792'
 'acrol0793' 'acrol0794' 'acrol0795' 'acrol0796' 'acrol0797' 'acrol0798'
 'acrol0799' 'acrol0800' 'acrol0801' 'acrol0802' 'acrol0803' 'acrol0804'
 'acrol0805' 'acrol0806' 'acrol0807' 'acrol0809' 'acrol0811' 'acrol0812'
 'acrol0813' 'acrol0814' 'acrol0815' 'acrol0816' 'acrol0817' 'acrol0818'
 'acrol0819' 'acrol0820' 'acrol0821' 'acrol0822' 'acrol0823' 'acrol0824'
 'acrol0825' 'acrol0826' 'acrol0827' 'acrol0828' 'acrol0829' 'acrol0830'
 'acrol0831' 'acrol0832' 'acrol0833' 'acrol0834' 'acrol0835' 'acrol0836'
 'acrol0837' 'acrol0839' 'acrol0840' 'acrol0842' 'acrol0843' 'acrol0844'
 'acrol0845' 'acrol0846' 'acrol0847' 'acrol0848' 'acrol0849' 'acrol0850'
 'acrol0851' 'acrol0852' 'acrol0853' 'acrol0854' 'acrol0855' 'acrol0856'
 'acrol0857' 'acrol0858' 'acrol0859' 'acrol0860' 'acrol0861' 'acrol0862'
 'acrol0863' 'acrol0864' 'acrol0865' 'acrol0866' 'acrol0867' 'acrol0868'
 'acrol0869' 'acrol0870' 'acrol0871' 'acrol0872' 'acrol0873' 'acrol0874'
 'acrol0875' 'acrol0876' 'acrol0877' 'acrol0878' 'acrol0879' 'acrol0880'
 'acrol0881' 'acrol0882' 'acrol0883' 'acrol0884' 'acrol0885' 'acrol0886'
 'acrol0887' 'acrol0888' 'acrol0889' 'acrol0890' 'acrol0891' 'acrol0892'
 'acrol0893' 'acrol0894' 'acrol0895' 'acrol0896' 'acrol0897' 'acrol0898'
 'acrol0899' 'acrol0900' 'acrol0902' 'acrol0903' 'acrol0905' 'acrol0906'
 'acrol0907' 'acrol0908' 'acrol0909' 'acrol0910' 'acrol0911' 'acrol0912'
 'acrol0913' 'acrol0914' 'acrol0915' 'acrol0916' 'acrol0917' 'acrol0918'
 'acrol0920' 'acrol0922' 'acrol0926' 'acrol0927' 'acrol0928' 'acrol0929'
 'acrol0930' 'acrol0931' 'acrol0932' 'acrol0933' 'acrol0934' 'acrol0935'
 'acrol0936' 'acrol0937' 'acrol0938' 'acrol0939' 'acrol0940' 'acrol0941'
 'acrol0942' 'acrol0943' 'acrol0944' 'acrol0945' 'acrol0946' 'acrol0947'
 'acrol0948' 'acrol0949' 'acrol0950' 'acrol0951' 'acrol0952' 'acrol0953'
 'acrol0954' 'acrol0955' 'acrol0956' 'acrol0957' 'acrol0958' 'acrol0959'
 'acrol0960' 'acrol0961' 'acrol0962' 'acrol0963' 'acrol0964' 'acrol0965'
 'acrol0966' 'acrol0967' 'acrol0968' 'acrol0969' 'acrol0970' 'acrol0971'
 'acrol0972' 'acrol0973' 'acrol0974' 'acrol0975' 'acrol0976' 'acrol0977'
 'acrol0978' 'acrol1020' 'acrol1021' 'amFFT000' 'amFFT008' 'amFFT009'
 'amFFT010' 'amFFT011' 'amFFT012' 'phFFT000' 'phFFT008' 'phFFT009'
 'phFFT010' 'phFFT011' 'phFFT012']
['data/results1/fs_0_subfs_3_tr_0_ts_5.npz']
0 reFFT010 0.0766293408706
1 reFFT018 0.0447414833478
2 reFFT004 0.0435756307039
3 mmdf 0.0427619960262
4 phFFT012 0.0409017707002
5 mmnf 0.0398151146058
6 phFFT009 0.0391392334455
7 phFFT011 0.037165513411
8 phFFT010 0.0342619814778
9 phFFT008 0.0341353010342
10 reFFT017 0.0308057578195
11 amFFT012 0.0304204922638
12 stdr 0.0292270519868
13 reFFT009 0.0240039463317
14 amFFT009 0.0221175965759
15 rng 0.022048362632
16 rngy 0.022048362632
17 hjorth 0.0219253534307
18 amFFT011 0.0198409229263
19 reFFT015 0.0187915593818
20 amFFT010 0.0182735340709
21 amFFT008 0.0175001756734
22 reFFT016 0.0165941225547
23 reFFT002 0.00653771301826
24 acrol0032 0.00340014577388
25 acrol0031 0.00340013319156
26 acrol0033 0.00340006155269
27 acrol0030 0.00340001154337
28 acrol0034 0.00339986928283
29 acrol0029 0.00339986311755
30 acrol0028 0.00339962581376
31 acrol0035 0.00339961364424
32 acrol0027 0.00339932175299
33 acrol0036 0.00339927996672
34 acrol0026 0.00339890435312
35 acrol0037 0.00339886889514
36 acrol0025 0.00339844385987
37 acrol0038 0.00339835666302
38 acrol0024 0.00339785363518
39 acrol0039 0.00339773935668
40 acrol0023 0.00339731398713
41 acrol0040 0.0033970942003
42 acrol0022 0.00339664286186
43 acrol0041 0.00339630493581
44 acrol0021 0.00339594798976
45 acrol0042 0.00339541909452
46 acrol0020 0.00339508366624
47 acrol0043 0.003394449804
48 acrol0019 0.00339422193922
49 acrol0044 0.00339333469331
50 acrol0018 0.00339331132714
51 acrol0017 0.0033923844778
52 acrol0045 0.00339213678646
53 acrol0016 0.00339145191175
54 acrol0046 0.00339086292815
55 acrol0015 0.00339048089589
56 acrol0014 0.00338946088926
57 acrol0047 0.00338943214227
58 acrol0013 0.00338846063886
59 acrol0048 0.00338796374664
60 acrol0012 0.0033874741378
61 acrol0011 0.00338645068003
62 acrol0049 0.00338637249578
63 acrol0010 0.00338548139388
64 acrol0050 0.00338470110041
65 acrol0009 0.00338450441255
66 acrol0008 0.0033835589125
67 acrol0051 0.00338294317041
68 acrol0007 0.00338259942963
69 acrol0006 0.00338162777416
70 acrol0052 0.00338116625971
71 acrol0005 0.00338072451587
72 acrol0004 0.00337980966957
73 acrol0053 0.00337926344988
74 acrol0003 0.00337892611007
75 acrol0002 0.00337801551798
76 acrol0054 0.0033773530283
77 acrol0001 0.00337711918594
78 se 0.00337628133105
79 ssi 0.00337628133105
80 acrol0000 0.00337628133105
81 var 0.00337628133105
82 acrol0055 0.0033753646736
83 acrol0056 0.00337335037384
84 acrol0057 0.00337123229495
85 acrol0058 0.00336904338874
86 acrol0059 0.00336683858823
87 acrol0060 0.00336449503489
88 acrol0061 0.00336216789163
89 acrol0062 0.00335975362529
90 acrol0063 0.00335737992064
91 acrol0064 0.00335487484311
92 acrol0065 0.00335235007025
93 acrol0066 0.00334975492777
94 acrol0067 0.00334718545701
95 acrol0068 0.00334454413031
96 acrol0069 0.00334188317042
97 acrol0070 0.00333925279626
98 acrol0071 0.00333659329207
99 acrol0072 0.00333389265225
100 acrol0073 0.00333115022255
101 acrol0074 0.00332844142271
102 acrol0075 0.0033257281867
103 acrol0076 0.00332300757562
104 acrol0077 0.00332025757737
105 acrol0078 0.00331751716552
106 acrol0079 0.0033147416914
107 acrol0080 0.00331198657774
108 acrol0081 0.0033092046539
109 acrol0082 0.00330640884562
110 acrol0083 0.00330362061947
111 acrol0084 0.00330086759701
112 acrol0085 0.00329801628173
113 acrol0086 0.00329511541027
114 acrol0087 0.00329228582721
115 acrol0088 0.00328937272865
116 acrol0089 0.00328650235901
117 acrol0090 0.00328349980116
118 acrol0091 0.00328050085726
119 acrol0092 0.00327750205723
120 acrol0093 0.00327442366333
121 acrol0094 0.00327134130687
122 acrol0095 0.00326824757775
123 acrol0096 0.00326510570231
124 acrol0097 0.00326198090682
125 acrol0098 0.00325879531535
126 acrol0099 0.00325566151283
127 acrol0100 0.00325247761694
128 acrol0101 0.00324926223733
129 acrol0102 0.00324604936978
130 acrol0103 0.00324280360982
131 acrol0104 0.00323959940934
132 acrol0105 0.00323630807866
133 acrol0106 0.00323303320614
134 acrol0107 0.00322976883152
135 acrol0108 0.00322646478929
136 acrol0109 0.00322323502859
137 acrol0110 0.00322001007512
138 acrol0111 0.00321673326776
139 acrol0112 0.00321357835145
140 acrol0113 0.00321035439503
141 acrol0114 0.00320720906884
142 acrol0115 0.00320409237246
143 acrol0116 0.00320109640294
144 acrol0117 0.00319811969749
145 acrol0118 0.00319523084868
146 acrol0119 0.00319244085766
147 acrol0120 0.00318970218864
148 acrol0121 0.00318707462348
149 acrol0122 0.00318461959591
150 acrol0123 0.00318225052029
151 acrol0171 0.00318036236512
152 acrol0172 0.00318031896645
153 acrol0170 0.00318027090269
154 acrol0173 0.00318018501354
155 acrol0169 0.00318006473636
156 acrol0124 0.00317996504254
157 acrol0174 0.0031799630715
158 acrol0168 0.00317975626255
159 acrol0175 0.00317954298357
160 acrol0167 0.00317940996668
161 acrol0176 0.00317901739831
162 acrol0166 0.00317888286614
163 acrol0177 0.00317838246418
164 acrol0165 0.00317836498014
165 acrol0125 0.00317785556424
166 acrol0164 0.0031777668953
167 acrol0178 0.00317764800404
168 acrol0163 0.00317712574209
169 acrol0179 0.00317668496886
170 acrol0162 0.00317642302892
171 acrol0126 0.00317582815273
172 acrol0180 0.00317570187115
173 acrol0161 0.00317566860898
174 acrol0160 0.00317483553278
175 acrol0181 0.0031746081007
176 acrol0159 0.00317404057154
177 acrol0127 0.00317398350265
178 acrol0182 0.00317337846576
179 acrol0158 0.00317317216478
180 acrol0157 0.00317233710683
181 acrol0128 0.00317220349251
182 acrol0183 0.00317202163442
183 acrol0156 0.00317141039729
184 acrol0129 0.00317057296704
185 acrol0155 0.00317050246336
186 acrol0184 0.00317049177988
187 acrol0154 0.0031695881597
188 acrol0130 0.00316911244831
189 acrol0185 0.00316894330036
190 acrol0153 0.0031686495305
191 acrol0152 0.00316777317592
192 acrol0131 0.00316772098472
193 acrol0186 0.0031672553976
194 acrol0151 0.00316687550567
195 acrol0132 0.00316644831852
196 acrol0150 0.00316596885591
197 acrol0187 0.00316546929052
198 acrol0133 0.00316528146392
199 acrol0149 0.00316513131769
200 acrol0148 0.00316437747951
201 acrol0134 0.00316432510959
202 acrol0147 0.0031636414099
203 acrol0188 0.00316354111148
204 acrol0135 0.00316351420327
205 acrol0146 0.00316298301971
206 acrol0136 0.00316278329427
207 acrol0145 0.00316244259434
208 acrol0137 0.00316221335902
209 acrol0144 0.00316202299333
210 acrol0138 0.00316172623487
211 acrol0143 0.00316163889731
212 acrol0189 0.00316154598508
213 acrol0142 0.00316138659466
214 acrol0139 0.0031613565086
215 acrol0140 0.00316123647067
216 acrol0141 0.00316121200102
217 acrol0190 0.00315943434892
218 acrol0194 0.00314964298804
219 acrol0195 0.00314694037402
220 acrol0196 0.00314401986302
221 acrol0197 0.00314105488245
222 acrol0198 0.00313793308538
223 acrol0199 0.00313476762783
224 acrol0200 0.00313148739651
225 acrol0201 0.00312803396944
226 acrol0202 0.00312444809825
227 acrol0203 0.00312079671851
228 acrol0204 0.00311697036119
229 acrol0205 0.00311304148549
230 acrol0206 0.00310902873511
231 acrol0208 0.00310065305243
232 acrol0209 0.00309628764064
233 acrol0213 0.00307800474017
234 acrol0214 0.00307323527626
235 acrol0215 0.00306841582697
236 acrol0216 0.00306345857308
237 acrol0217 0.00305847355468
238 acrol0218 0.00305341389412
239 acrol0220 0.00304322103087
240 acrol0221 0.00303809691734
241 acrol0223 0.00302758532291
242 acrol0224 0.00302231603066
243 acrol0227 0.00300656724293
244 acrol0228 0.00300135224791
245 acrol0229 0.00299608620809
246 acrol0230 0.00299091779968
247 acrol0231 0.00298572392226
248 acrol0232 0.00298062501718
249 acrol0233 0.00297550534133
250 acrol0234 0.00297047696242
251 acrol0235 0.00296539794933
252 acrol0236 0.00296041249555
253 acrol0237 0.00295554992247
254 acrol0238 0.00295068783164
255 acrol0239 0.00294586170353
256 acrol0240 0.00294116274541
257 acrol0241 0.00293654168268
258 acrol0242 0.00293199036896
259 acrol0243 0.00292740968881
260 acrol0244 0.00292294756328
261 acrol0245 0.00291854973241
262 acrol0246 0.00291418173322
263 acrol0247 0.00290986080057
264 acrol0248 0.00290555371274
265 acrol0249 0.00290141458441
266 acrol0250 0.00289724182417
267 acrol0251 0.00289302725413
268 acrol0252 0.00288887419935
269 acrol0253 0.00288474527645
270 acrol0254 0.00288059959492
271 acrol0255 0.00287649802138
272 acrol0256 0.00287234815878
273 acrol0257 0.0028682296794
274 acrol0258 0.0028640925749
275 acrol0259 0.00286003940513
276 acrol0260 0.00285586930717
277 acrol0261 0.00285162641353
278 acrol0262 0.00284743609044
279 acrol0263 0.00284323788204
280 acrol0264 0.00283908618992
281 acrol0265 0.00283478759578
282 acrol0266 0.00283048790098
283 acrol0267 0.00282610829701
284 acrol0268 0.0028218418708
285 acrol0269 0.00281743425906
286 acrol0270 0.00281304095166
287 acrol0271 0.00280860463869
288 acrol0272 0.00280415890364
289 acrol0273 0.00279961246926
290 acrol0274 0.00279510879442
291 acrol0275 0.00279051132366
292 acrol0276 0.00278594474607
293 acrol0277 0.00278129288879
294 acrol0278 0.00277662744558
295 acrol0279 0.00277191072685
296 acrol0280 0.00276716851282
297 acrol0281 0.00276238474118
298 acrol0282 0.00275759132269
299 acrol0283 0.00275273773762
300 acrol0284 0.00274791142243
301 acrol0285 0.00274301085421
302 acrol0286 0.00273807423522
303 acrol0287 0.00273318141075
304 acrol0288 0.00272828210718
305 acrol0289 0.00272337662028
306 acrol0290 0.00271842682674
307 acrol0291 0.00271352036768
308 acrol0292 0.00270866672364
309 acrol0293 0.00270381622681
310 acrol0294 0.00269887043327
311 acrol0295 0.00269397867114
312 acrol0296 0.00268907118885
313 acrol0297 0.0026842507489
314 acrol0298 0.00267938455671
315 acrol0299 0.00267454657876
316 acrol0300 0.00266969338618
317 acrol0301 0.00266492549726
318 acrol0302 0.00266015537081
319 acrol0303 0.00265534915361
320 acrol0304 0.0026505797966
321 acrol0305 0.00264586499601
322 acrol0306 0.00264110989389
323 acrol0307 0.00263634554499
324 acrol0308 0.00263165292856
325 acrol0309 0.00262682018566
326 acrol0310 0.00262203559752
327 acrol0311 0.00261715425485
328 acrol0312 0.00261232325712
329 acrol0313 0.00260752122524
330 acrol0314 0.00260272800843
331 acrol0315 0.00259798511388
332 acrol0316 0.00259319358106
333 acrol0317 0.00258848289349
334 acrol0318 0.0025838311585
335 acrol0319 0.00257923320399
336 acrol0320 0.00257467888338
337 acrol0321 0.00257017451821
338 acrol0322 0.0025656610156
339 acrol0323 0.00256124194049
340 acrol0324 0.00255688517545
341 acrol0325 0.00255261523199
342 acrol0326 0.00254839082721
343 acrol0327 0.00254426447056
344 acrol0328 0.00254021580285
345 acrol0329 0.00253614630599
346 acrol0330 0.00253218064243
347 acrol0331 0.00252824853365
348 acrol0332 0.00252442152595
349 acrol0333 0.00252059370572
350 acrol0334 0.00251685883087
351 acrol0335 0.00251317065344
352 acrol0336 0.00250953661201
353 acrol0337 0.00250588240079
354 acrol0338 0.00250234666933
355 acrol0339 0.00249885930584
356 acrol0340 0.00249551828143
357 acrol0341 0.00249217543461
358 acrol0342 0.00248884006955
359 acrol0343 0.00248564783615
360 acrol0344 0.00248245645485
361 acrol0345 0.00247935242318
362 acrol0346 0.00247625574166
363 acrol0347 0.00247325524385
364 acrol0348 0.00247036163994
365 acrol0349 0.00246738003648
366 acrol0350 0.00246445313882
367 acrol0351 0.00246157429188
368 acrol0352 0.00245874198366
369 acrol0353 0.00245592886533
370 acrol0354 0.00245313664329
371 acrol0355 0.00245030329684
372 acrol0356 0.00244748189552
373 acrol0357 0.00244469145401
374 acrol0358 0.00244188043037
375 acrol0359 0.00243909548773
376 acrol0360 0.0024362758287
377 acrol0361 0.00243348480201
378 acrol0362 0.00243064389806
379 acrol0363 0.00242778222156
380 acrol0364 0.00242489108174
381 acrol0365 0.00242209072594
382 acrol0366 0.00241917854891
383 acrol0367 0.00241625985597
384 acrol0368 0.00241326143207
385 acrol0369 0.00241021272807
386 acrol0370 0.00240719961845
387 acrol0371 0.0024039822655
388 acrol0372 0.00240075075427
389 acrol0373 0.0023974436581
390 acrol0374 0.00239406046175
391 acrol0375 0.00239054535774
392 acrol0376 0.00238706524359
393 acrol0377 0.00238349457541
394 acrol0378 0.00237977646993
395 acrol0379 0.00237603502592
396 acrol0380 0.00237210094317
397 acrol0381 0.00236815940942
398 acrol0382 0.00236412956845
399 acrol0383 0.00236004637482
400 acrol0384 0.00235581004723
401 acrol0385 0.00235144674895
402 acrol0386 0.00234702299353
403 acrol0387 0.00234251899559
404 acrol0388 0.00233784366193
405 acrol0389 0.00233310478469
406 acrol0390 0.0023282570876
407 acrol0391 0.00232340560948
408 acrol0392 0.00231833912932
409 acrol0393 0.00231316157106
410 acrol0394 0.0023078790913
411 acrol0395 0.00230250218087
412 acrol0396 0.00229709004424
413 acrol0397 0.00229152896682
414 acrol0398 0.0022858653603
415 phFFT000 0.00228538634172
416 acrol0399 0.00228009291619
417 acrol0400 0.00227410884139
418 acrol0401 0.00226807312488
419 acrol0402 0.00226203387422
420 acrol0403 0.00225577985049
421 acrol0404 0.00224958523684
422 acrol0405 0.00224319559376
423 acrol0406 0.00223680523741
424 acrol0407 0.00223035565463
425 acrol0408 0.00222395951693
426 acrol0409 0.00221746831935
427 acrol0410 0.00221085625057
428 acrol0411 0.00220428506356
429 acrol0412 0.00219769182118
430 acrol0413 0.00219113153036
431 acrol0414 0.00218442791232
432 acrol0415 0.00217770875064
433 acrol0416 0.00217097587083
434 acrol0417 0.0021641742097
435 acrol0418 0.00215735879827
436 acrol0419 0.00215051660846
437 acrol0420 0.00214359686073
438 acrol0421 0.00213665040495
439 acrol0422 0.00212966273583
440 acrol0423 0.00212265950344
441 acrol0424 0.00211573232671
442 acrol0425 0.00210876184637
443 acrol0426 0.00210176278317
444 acrol0427 0.00209478130169
445 acrol0428 0.00208778022005
446 acrol0429 0.00208096772831
447 acrol0430 0.00207407385765
448 acrol0431 0.00206715027415
449 acrol0432 0.00206035390267
450 acrol0433 0.00205366832498
451 acrol0434 0.00204694540424
452 acrol0435 0.0020401595879
453 acrol0436 0.00203338604211
454 acrol0437 0.00202663465336
455 acrol0438 0.00201990231593
456 acrol0439 0.00201319288511
457 acrol0440 0.00200643124029
458 acrol0441 0.00199973010095
459 acrol0442 0.00199299331095
460 acrol0443 0.00198629072543
461 acrol0444 0.00197958551461
462 acrol0445 0.00197284918624
463 acrol0446 0.00196612945593
464 acrol0447 0.00195941640644
465 acrol0448 0.00195275653278
466 acrol0449 0.00194607052032
467 acrol0450 0.00193944098143
468 acrol0451 0.00193282759007
469 acrol0452 0.00192630375667
470 acrol0453 0.00191972267598
471 acrol0454 0.00191317285337
472 acrol0455 0.00190678939484
473 acrol0458 0.00188737934701
474 acrol0459 0.00188088161072
475 acrol0460 0.0018743762877
476 acrol0461 0.00186790120394
477 acrol0462 0.00186142984246
478 acrol0463 0.00185496718941
479 acrol0464 0.00184860635776
480 acrol0465 0.00184212113973
481 acrol0466 0.00183561718686
482 acrol0467 0.00182921242052
483 acrol0468 0.0018228223511
484 acrol0469 0.0018163478142
485 acrol0470 0.00180992170476
486 acrol0471 0.00180356393271
487 acrol0472 0.0017972435552
488 acrol0473 0.00179096834731
489 acrol0474 0.00178455426839
490 acrol0475 0.0017783132554
491 acrol0476 0.00177209450936
492 acrol0477 0.00176574621202
493 acrol0478 0.00175952102268
494 acrol0479 0.00175323871747
495 acrol0480 0.00174697726184
496 acrol0481 0.00174076056056
497 acrol0482 0.00173442078235
498 acrol0483 0.00172808495822
499 acrol0484 0.00172176467193
500 acrol0485 0.00171544714271
501 acrol0486 0.00170913192658
502 acrol0487 0.00170271774003
503 acrol0488 0.0016963141502
504 acrol0489 0.00168991742959
505 acrol0490 0.00168348700877
506 acrol0491 0.00167698271327
507 acrol0492 0.00167049137005
508 acrol0493 0.00166406356522
509 acrol0494 0.0016574664598
510 acrol0495 0.00165097420856
511 acrol0496 0.00164448756197
512 acrol0497 0.00163806909321
513 acrol0498 0.0016316342853
514 acrol0499 0.00162516431884
515 acrol0500 0.00161876681713
516 acrol0501 0.00161231787322
517 acrol0502 0.00160597217174
518 acrol0503 0.00159965544866
519 acrol0504 0.00159316822309
520 acrol0505 0.0015868420406
521 acrol0506 0.00158059844485
522 acrol0507 0.00157431914063
523 acrol0508 0.00156802885057
524 acrol0509 0.00156181002894
525 acrol0510 0.00155551701383
526 acrol0511 0.00154926412717
527 acrol0512 0.0015430150562
528 acrol0513 0.00153676253984
529 acrol0514 0.00153048969467
530 acrol0515 0.00152414975586
531 acrol0516 0.0015178538055
532 acrol0517 0.00151148953423
533 acrol0518 0.00150515663341
534 acrol0519 0.00149879728314
535 acrol0520 0.00149240272698
536 acrol0521 0.00148582567336
537 acrol0522 0.00147938761291
538 acrol0523 0.00147293741932
539 acrol0524 0.00146639941787
540 acrol0525 0.00145987309509
541 acrol0526 0.00145330504679
542 acrol0527 0.00144675099881
543 acrol0528 0.00144020883794
544 acrol0529 0.00143358146306
545 acrol0530 0.00142697079455
546 acrol0531 0.00142023067562
547 acrol0532 0.00141365723724
548 acrol0533 0.00140701061777
549 acrol0534 0.00140033469889
550 acrol0535 0.00139375693111
551 acrol0536 0.00138720616784
552 acrol0537 0.00138062741273
553 acrol0538 0.00137405210866
554 acrol0539 0.001367570147
555 acrol0540 0.00136108701007
556 acrol0541 0.00135458534929
557 acrol0542 0.00134808071102
558 acrol0543 0.00134157766339
559 acrol0544 0.00133518415805
560 acrol0545 0.00132877599623
561 acrol0546 0.00132231385543
562 acrol0547 0.0013159177704
563 acrol0548 0.00130938784414
564 acrol0549 0.00130297209438
565 acrol0550 0.0012965786626
566 acrol0551 0.0012899266488
567 acrol0552 0.00128341886282
568 acrol0553 0.00127684984222
569 acrol0554 0.00127024980332
570 acrol0555 0.00126356318192
571 acrol0556 0.001256797417
572 acrol0557 0.00125013733989
573 acrol0558 0.00124343195695
574 acrol0559 0.0012366117164
575 acrol0560 0.00122981371759
576 acrol0561 0.00122310790668
577 acrol0562 0.00121632418213
578 acrol0563 0.00120946107597
579 acrol0564 0.0012026198477
580 acrol0565 0.0011957082206
581 acrol0566 0.00118878296754
582 acrol0567 0.0011819138229
583 mx 0.0011815647824
584 acrol0568 0.00117500050023
585 acrol0569 0.00116804828089
586 acrol0570 0.00116122308669
587 acrol0571 0.00115419236306
588 acrol0572 0.00114709442472
589 acrol0573 0.00114007645505
590 acrol0574 0.00113292094703
591 acrol0575 0.0011256907605
592 acrol0576 0.00111843371053
593 acrol0577 0.00111115898773
594 acrol0578 0.00110377394477
595 acrol0579 0.00109638954713
596 acrol0580 0.00108895954464
597 acrol0581 0.00108156097321
598 acrol0582 0.00107412393362
599 acrol0583 0.00106664245594
600 acrol0584 0.0010591569989
601 acrol0585 0.00105161029332
602 acrol0586 0.0010440856466
603 acrol0587 0.00103650867989
604 acrol0588 0.00102890176531
605 acrol0589 0.00102125393007
606 acrol0590 0.00101352284231
607 acrol0591 0.00100584615444
608 acrol0592 0.000998232116238
609 acrol0593 0.00099043813734
610 acrol0594 0.000982452760026
611 acrol0595 0.000974470882749
612 acrol0596 0.000966563840005
613 acrol0597 0.000958385954178
614 acrol0598 0.000950195578451
615 acrol0599 0.000941972512132
616 acrol0600 0.000933760173095
617 acrol0601 0.000925576897823
618 acrol0602 0.000917252862743
619 acrol0603 0.000908929119152
620 acrol0604 0.000900658053843
621 acrol0605 0.000892367990878
622 acrol0606 0.000884196633625
623 acrol0607 0.000876026849989
624 acrol0608 0.000867837560555
625 acrol0609 0.000859755760915
626 acrol0610 0.000851654193561
627 acrol0611 0.000843593979892
628 acrol0612 0.00083570482655
629 acrol0613 0.00082775133083
630 acrol0614 0.000819824658647
631 acrol0615 0.000811811508965
632 acrol0616 0.000803942714897
633 acrol0617 0.000796194381609
634 acrol0618 0.000788379977658
635 acrol0619 0.000780643025702
636 acrol0620 0.000772889333996
637 acrol0621 0.000765405486598
638 acrol0622 0.000757845624913
639 acrol0623 0.000750549557627
640 acrol0624 0.000743301228976
641 acrol0625 0.00073610606131
642 acrol0626 0.000729226030246
643 acrol0627 0.000722515999064
644 acrol0628 0.000715958436713
645 acrol0629 0.000709663199424
646 acrol0630 0.000703422943907
647 acrol0631 0.000697333514701
648 acrol0632 0.000691440557301
649 acrol0633 0.000685705760933
650 acrol0634 0.000680384366149
651 acrol0635 0.000675017449836
652 acrol0636 0.00066982778636
653 acrol0637 0.000664806851308
654 acrol0638 0.000660036738648
655 acrol0639 0.000655428351033
656 acrol0640 0.00065089116442
657 acrol0641 0.000646588764202
658 acrol0642 0.000642523904952
659 acrol0643 0.000638565771857
660 acrol0644 0.000634762111686
661 acrol0645 0.000630959802622
662 acrol0646 0.000627513441681
663 acrol0647 0.00062411698894
664 acrol0648 0.000620969153448
665 acrol0649 0.000617999165916
666 acrol0650 0.00061499549712
667 acrol0651 0.000612243235018
668 acrol0652 0.000609655068923
669 acrol0653 0.00060720899174
670 acrol0654 0.000604847322635
671 acrol0655 0.000602779404895
672 acrol0656 0.000600727082434
673 acrol0657 0.000598773330359
674 acrol0658 0.000596999403157
675 acrol0659 0.000595259001142
676 acrol0660 0.000593761764988
677 acrol0661 0.000592069235516
678 acrol0662 0.000590463087011
679 acrol0663 0.000588927438237
680 acrol0664 0.000587487248192
681 acrol0665 0.00058599995167
682 acrol0666 0.000584619469165
683 acrol0667 0.000583147867638
684 acrol0668 0.00058176441364
685 acrol0669 0.000580298822011
686 acrol0670 0.000578886353691
687 acrol0671 0.000577538148985
688 acrol0672 0.000576181129716
689 acrol0673 0.000574781838978
690 acrol0674 0.000573310471944
691 acrol0675 0.000571740626667
692 acrol0676 0.000570121928687
693 acrol0677 0.000568621089212
694 acrol0678 0.000566981801692
695 acrol0679 0.000565113473872
696 acrol0680 0.000563239552181
697 acrol0681 0.000561236956906
698 acrol0682 0.000559199121902
699 acrol0683 0.000556888893083
700 acrol0684 0.000554584775334
701 acrol0685 0.000552275014856
702 acrol0686 0.000549696758482
703 acrol0687 0.00054696312058
704 acrol0688 0.000544037563221
705 acrol0689 0.000541101855636
706 acrol0690 0.000538080160074
707 acrol0691 0.000534932567818
708 acrol0692 0.000531613047829
709 acrol0693 0.00052821701708
710 acrol0694 0.000524634457439
711 acrol0695 0.000520927862119
712 acrol0696 0.000517021271923
713 acrol0697 0.000513115208162
714 acrol0698 0.000509029557504
715 acrol0699 0.000504680182791
716 acrol0700 0.000500255883781
717 acrol0701 0.000495680700867
718 acrol0702 0.000490891985395
719 acrol0703 0.000485924793299
720 acrol0704 0.000480914170937
721 acrol0705 0.000475830242936
722 acrol0706 0.000470593683248
723 acrol0707 0.000465270768962
724 acrol0708 0.000459773678501
725 acrol0709 0.000454066758718
726 acrol0710 0.000448544765212
727 acrol0711 0.000442818102534
728 acrol0712 0.000437102888832
729 acrol0713 0.0004312351119
730 acrol0714 0.000425277601281
731 acrol0715 0.00041948294261
732 acrol0716 0.000413573926363
733 acrol0717 0.000407965447027
734 acrol0718 0.000402173420429
735 acrol0719 0.000396339601555
736 acrol0720 0.000390644872976
737 acrol0721 0.000384810836325
738 acrol0722 0.000378912654989
739 acrol0723 0.000373047242726
740 acrol0724 0.000367177821497
741 acrol0725 0.000361088704744
742 acrol0726 0.00035502451336
743 acrol0727 0.000348930559403
744 acrol0728 0.000342866562396
745 acrol0729 0.000336594883198
746 acrol0730 0.00033040674556
747 acrol0731 0.000324025334748
748 acrol0732 0.000317868281208
749 acrol0733 0.000311651317179
750 acrol0734 0.000305336571235
751 acrol0735 0.000298835877516
752 acrol0736 0.000292426784191
753 acrol0737 0.000286018635548
754 acrol0738 0.000279620654215
755 acrol0739 0.000273109056933
756 acrol0740 0.00026663593327
757 acrol0741 0.000260311137886
758 acrol0742 0.000253944001381
759 acrol0743 0.000247657697037
760 acrol0744 0.000241396525197
761 acrol0745 0.000235212368076
762 acrol0746 0.000229021969015
763 acrol0747 0.00022298633069
764 acrol0748 0.000216926661768
765 acrol0749 0.000211044189275
766 acrol0750 0.000205075695294
767 acrol0751 0.000199349777029
768 acrol0752 0.00019343230264
769 acrol0753 0.000187802345195
770 acrol0754 0.000182197264817
771 acrol0755 0.000176678772546
772 acrol0902 0.000171162152852
773 acrol0756 0.000171047130592
774 acrol0903 0.000170502562478
775 acrol0900 0.000170398386704
776 acrol0899 0.000168436146718
777 acrol0898 0.00016589613929
778 acrol0757 0.000165751730196
779 acrol0905 0.000165504195039
780 acrol0897 0.000162249995952
781 acrol0906 0.000162038638946
782 acrol0758 0.000160125910767
783 acrol0896 0.000157926849259
784 acrol0907 0.000157543282244
785 acrol0759 0.000154668187361
786 acrol0895 0.00015282905126
787 acrol0908 0.000152319885209
788 acrol0760 0.000149131839674
789 acrol0909 0.000146685898956
790 acrol0894 0.000146477800868
791 acrol0761 0.000143989476145
792 acrol0893 0.000139979419237
793 acrol0910 0.000139978616127
794 acrol0762 0.000138718481029
795 acrol0763 0.00013341255111
796 acrol0911 0.000132666320257
797 acrol0892 0.000132599978603
798 acrol0764 0.000127906840515
799 acrol0891 0.000124657915725
800 acrol0912 0.000124471645113
801 acrol0765 0.000122627559751
802 acrol0766 0.000117618732872
803 acrol0913 0.000116502211445
804 acrol0890 0.000115593709981
805 acrol0914 0.000107390448773
806 acrol0768 0.00010700562555
807 acrol0889 0.000105682303548
808 acrol0769 0.000101589635641
809 acrol0915 9.83537485023e-05
810 acrol0888 9.54639267851e-05
811 acrol0916 8.89839750941e-05
812 acrol0887 8.42597691057e-05
813 imFFT010 8.18447902946e-05
814 acrol0917 7.86381368471e-05
815 acrol0886 7.29180620042e-05
816 acrol0918 6.83572290424e-05
817 acrol0885 6.08146101796e-05
818 acrol0884 4.7478669803e-05
819 acrol0920 4.63544794916e-05
820 acrol0780 3.6006695229e-05
821 acrol0883 3.36440890442e-05
822 acrol0922 2.38019082093e-05
823 acrol0882 1.89419582895e-05
824 acrol0881 3.84905818358e-06
825 acrol0785 -2.22064881522e-06
826 acrol0786 -1.0919878522e-05
827 acrol0880 -1.16933718883e-05
828 acrol0787 -1.9807790868e-05
829 acrol0926 -2.49341068948e-05
830 acrol0879 -2.73110341749e-05
831 acrol0788 -2.88199210462e-05
832 acrol0927 -3.79914964352e-05
833 acrol0789 -3.83102527814e-05
834 acrol0878 -4.32799835461e-05
835 acrol0790 -4.82148067818e-05
836 acrol0928 -5.10272788393e-05
837 acrol0791 -5.80869941606e-05
838 acrol0877 -5.98214011776e-05
839 acrol0929 -6.46447245307e-05
840 acrol0792 -6.83067930365e-05
841 acrol0876 -7.64613563736e-05
842 acrol0930 -7.82200106529e-05
843 acrol0793 -7.86491375417e-05
844 acrol0794 -8.93319525877e-05
845 acrol0931 -9.22845252295e-05
846 acrol0875 -9.30800459065e-05
847 acrol0795 -0.000100104106355
848 acrol0932 -0.000106632949131
849 acrol0874 -0.00010980472151
850 acrol0796 -0.000111293700273
851 acrol0933 -0.000120708811935
852 acrol0797 -0.000122429698714
853 acrol0873 -0.0001266390198
854 acrol0798 -0.000133742355774
855 acrol0934 -0.000135319880581
856 acrol0872 -0.000143295633896
857 acrol0799 -0.00014542714215
858 acrol0935 -0.000150318839143
859 acrol0800 -0.000156859190732
860 acrol0871 -0.000159600617313
861 acrol0936 -0.000164670905565
862 acrol0801 -0.000168620862112
863 acrol0870 -0.000175928101751
864 acrol0937 -0.00017980915066
865 acrol0802 -0.000180464976603
866 acrol0869 -0.000191974729224
867 acrol0803 -0.000192397108261
868 acrol0938 -0.000194546063113
869 acrol0804 -0.000204019985015
870 acrol0868 -0.000207659677144
871 acrol0939 -0.000210504577438
872 acrol0805 -0.000215647624672
873 acrol0867 -0.000223293524702
874 acrol0940 -0.000226522667772
875 acrol0806 -0.00022736954903
876 acrol0866 -0.000238274420065
877 acrol0807 -0.000239074054685
878 acrol0941 -0.000242066138652
879 acrol0865 -0.000253238837375
880 acrol0942 -0.000258311239233
881 acrol0809 -0.000262216889991
882 acrol0864 -0.000267534800662
883 acrol0943 -0.000275222409976
884 acrol0863 -0.000281875181006
885 acrol0811 -0.000284454418653
886 acrol0944 -0.000292365298706
887 acrol0812 -0.000295342461632
888 acrol0862 -0.000295550007142
889 acrol0813 -0.000305812215758
890 acrol0861 -0.000308808818977
891 acrol0945 -0.000309889997944
892 acrol0814 -0.000316341940306
893 acrol0860 -0.000321588077109
894 acrol0815 -0.000326619153655
895 acrol0946 -0.00032805718111
896 acrol0859 -0.000334003661524
897 acrol0816 -0.000336686052159
898 acrol0858 -0.000345852958465
899 acrol0817 -0.00034622286993
900 acrol0947 -0.000346378045011
901 acrol0818 -0.000355539831232
902 acrol0857 -0.000357547959988
903 acrol0819 -0.000364485081172
904 acrol0948 -0.0003655039543
905 acrol0856 -0.000368263234623
906 acrol0820 -0.000373129764211
907 acrol0855 -0.000378622437092
908 acrol0821 -0.000381545725581
909 acrol0949 -0.000384864274496
910 acrol0854 -0.00038835379538
911 acrol0822 -0.000389385713603
912 acrol0823 -0.000396942811202
913 acrol0853 -0.000397471967866
914 acrol0824 -0.000404079201942
915 acrol0950 -0.000405089980972
916 acrol0852 -0.00040563798451
917 acrol0825 -0.00041058080041
918 acrol0851 -0.000413470667035
919 acrol0826 -0.000416686361072
920 acrol0850 -0.000420651058619
921 acrol0827 -0.000422665870035
922 acrol0951 -0.000425768276318
923 acrol0849 -0.000426854490892
924 acrol0828 -0.000428037079178
925 acrol0848 -0.000432442338897
926 acrol0829 -0.000433297313917
927 acrol0847 -0.000437545031839
928 acrol0830 -0.000437686874282
929 acrol0831 -0.000441704787728
930 acrol0846 -0.000442009818461
931 acrol0832 -0.000445341603657
932 acrol0845 -0.00044545896066
933 acrol0952 -0.000447631610225
934 acrol0833 -0.000448533633566
935 acrol0844 -0.000448807125991
936 acrol0834 -0.000451014159245
937 acrol0843 -0.000451571453013
938 acrol0835 -0.000452974834282
939 acrol0842 -0.000453611229273
940 acrol0836 -0.000454455654138
941 acrol0837 -0.000455630993246
942 acrol0840 -0.000455751876653
943 acrol0839 -0.00045628543125
944 acrol0953 -0.000469897655891
945 acrol0954 -0.000492251246807
946 acrol0955 -0.000515105960327
947 acrol0956 -0.000539291408374
948 acrol0957 -0.000564097643641
949 acrol0958 -0.000588879003134
950 acrol0959 -0.000614836865414
951 acrol0960 -0.000640876414804
952 acrol0961 -0.000667626169291
953 acrol0962 -0.000693500670515
954 acrol0963 -0.000721132130371
955 acrol0964 -0.000748485377895
956 acrol0965 -0.000777161580288
957 acrol0966 -0.000804806567787
958 reFFT003 -0.000826672818554
959 acrol0967 -0.000833310398512
960 acrol0968 -0.000862051977147
961 acrol0969 -0.000890136849424
962 acrol0970 -0.000919030996069
963 acrol0971 -0.000947818560185
964 acrol0972 -0.000977742211945
965 acrol0973 -0.00100683164035
966 acrol0974 -0.00103688683245
967 acrol0975 -0.00106680992607
968 acrol0976 -0.00109679782012
969 acrol0977 -0.00112546070494
970 acrol0978 -0.00115491761266
971 acrol1021 -0.00149405059644
972 acrol1020 -0.00149738457003
973 rms -0.00280905601936
974 med -0.00333220095463
975 imFFT003 -0.00374263212712
976 meanabs -0.00375649582584
977 amFFT000 -0.00375649582584
978 intsgnl -0.00375649582584
979 reFFT000 -0.00375649582584
980 meanv -0.00375649582584
981 imFFT004 -0.00455053619553
982 imFFT011 -0.00505660882015
983 imFFT034 -0.00586626634597
984 meanabsslp -0.00699308156457
985 imFFT021 -0.00702156923283
986 imFFT023 -0.00762655971935
987 imFFT009 -0.00792303491442
988 imFFT028 -0.00792506431111
989 imFFT029 -0.00811903256971
990 reFFT001 -0.00835024607545
991 imFFT012 -0.00855434588748
992 imFFT006 -0.00933011302069
993 reFFT011 -0.0111941662133
994 imFFT008 -0.0143431740844
995 reFFT005 -0.0196819692878
996 reFFT008 -0.0423091638791
997 reFFT012 -0.0448433819424
998 reFFT007 -0.0527126994613
999 reFFT006 -0.103489473087

In [43]:
r, fs, subfs = 1, 0, 3
filn = glob.glob("data/results" + str(r) + "/fs_" + str(fs) + "_subfs_" + str(subfs) + "_*.npz")[0]
print filn
model_file = np.load(filn)
model = model_file['model']
#keep a list of the 1000 features kept
model_feat_scores = model[0].named_steps['feature_selection'].scores_
model_feat_scores = model[0].named_steps['feature_selection'].get_support(indices = True)
model_pca_var = model[0].named_steps['decomp'].explained_variance_
model_pca_var_rat = model[0].named_steps['decomp'].explained_variance_ratio_
model_pca_covar = model[0].named_steps['decomp'].get_covariance()
model_pca_mean = model[0].named_steps['decomp'].mean_
n_comp = model[0].named_steps['decomp'].n_components_
comp = model[0].named_steps['decomp'].components_
print len(model_pca_var), model_pca_var
print len(model_pca_var_rat), model_pca_var_rat
print model_pca_covar.shape, model_pca_covar
# plt.imshow(model_pca_covar)
print len(model_pca_mean), model_pca_mean
print n_comp
print comp.shape, comp
nfeat = 1000
feat_importance = np.zeros(nfeat)
for nc in range(len(comp)):
    feat_importance += comp[nc]*model_pca_var_rat[nc]
#     plt.plot(range(1000),comp[nc]*model_pca_var_rat[nc])
plt.plot(range(nfeat),feat_importance/nfeat)
print feat_importance*nfeat
sort_feat_imp_ind = np.array(feat_importance).argsort()[:][::-1]
print np.array(featnames)[sort_feat_imp_ind]


data/results1/fs_0_subfs_3_tr_5_ts_4.npz
20 [ 635.27304376  278.33611227   30.69938174    6.93535896    2.28809825
    2.09643049    1.78208177    1.6961141     1.55467524    1.51123534
    1.3664692     1.30327787    1.21026144    1.15230296    1.13857686
    1.09402407    1.07557543    1.0462369     0.99788984    0.99201795]
20 [ 0.63527304  0.27833611  0.03069938  0.00693536  0.0022881   0.00209643
  0.00178208  0.00169611  0.00155468  0.00151124  0.00136647  0.00130328
  0.00121026  0.0011523   0.00113858  0.00109402  0.00107558  0.00104624
  0.00099789  0.00099202]
(1000, 1000) [[ 27.37368911   0.92285356   0.0595558  ...,   0.12837082   0.12743588
    0.21891365]
 [  0.92285356  27.37368911   0.0595558  ...,   0.12837082   0.12743588
    0.21891365]
 [  0.0595558    0.0595558   27.24602051 ...,   0.79672983   0.79658456
    0.68288268]
 ..., 
 [  0.12837082   0.12837082   0.79672983 ...,  27.29621694   0.84533024
    0.7324894 ]
 [  0.12743588   0.12743588   0.79658456 ...,   0.84533024  27.29611624
    0.73233508]
 [  0.21891365   0.21891365   0.68288268 ...,   0.7324894    0.73233508
   27.09834563]]
1000 [ -1.74010466e-15  -1.74010466e-15   2.29597143e-17   1.26640950e-15
  -4.08924595e-15   1.93344962e-16  -1.00539380e-15   0.00000000e+00
  -1.74010466e-15   1.20840601e-18  -4.83362405e-18  -2.41681203e-17
  -1.57092782e-17  -1.02714511e-17   0.00000000e+00   1.20840601e-18
   3.62521804e-18  -3.14185563e-17   1.32924661e-17   3.62521804e-17
   1.20840601e-17   4.59194285e-17   9.30472630e-17  -1.81260902e-18
  -4.83362405e-17   6.04203007e-19  -4.28984135e-17   2.53765263e-17
  -3.62521804e-18   1.38966692e-17  -3.62521804e-18  -1.32924661e-17
   1.20840601e-17  -2.41681203e-17   1.69176842e-17   4.22942105e-18
  -7.73379848e-17   1.02714511e-17   1.20840601e-17   2.65849323e-17
   6.82749397e-17  -1.46217128e-16  -7.25043608e-18  -2.36847579e-16
   1.35341473e-16   6.64623307e-18  -4.83362405e-17  -1.02714511e-17
   1.64343218e-16   4.83362405e-18  -1.26278428e-16   4.10858044e-17
   2.15096270e-16   4.83362405e-17  -1.00297699e-16   4.47110225e-17
   3.14185563e-17  -1.49842346e-16   1.42591910e-16   7.00875488e-17
   4.10858044e-17   1.57092782e-17   2.05429022e-17   4.95446465e-17
  -4.83362405e-18   6.28371127e-17   5.55866766e-17  -2.90017443e-17
   1.00297699e-16  -7.49211728e-17  -1.35341473e-16   1.81260902e-17
   6.88791428e-17   8.94220450e-17   6.04203007e-17  -3.74605864e-17
  -1.34133067e-16  -1.37758286e-16  -9.54640750e-17   7.25043608e-18
  -7.73379848e-17  -2.17513082e-17   2.53765263e-17  -3.86689924e-17
   1.66760030e-16   8.09632029e-17  -1.24465819e-16   1.06339729e-16
  -1.47425534e-16   2.05429022e-17   1.57092782e-16  -6.04203007e-18
  -1.47425534e-16   1.99386992e-16   1.64343218e-16  -2.47723233e-16
   2.13887864e-16   1.36549879e-16  -9.54640750e-17   2.05429022e-17
   1.02714511e-16  -8.70052330e-17  -2.41681203e-18  -3.74605864e-17
   6.76707367e-17  -1.20840601e-18  -6.28371127e-17  -9.54640750e-17
   5.92118946e-17  -9.42556690e-17   5.19614586e-17   4.35026165e-17
   0.00000000e+00  -1.07548135e-16  -1.29299443e-16   8.57968269e-17
  -1.28091037e-16  -1.37758286e-16   3.62521804e-17  -9.42556690e-17
   3.62521804e-17   4.95446465e-17  -1.22049007e-16   3.74605864e-17
  -7.61295788e-17  -3.86689924e-17  -8.45884209e-18  -1.01506105e-16
   2.48931639e-16  -7.49211728e-17   2.06637428e-16   2.77933383e-17
  -6.04203007e-18  -5.43782706e-17   4.59194285e-17  -1.31716255e-16
  -1.12381759e-16  -1.37758286e-16   2.21138300e-16  -2.29597143e-17
  -2.50140045e-16   1.86094526e-16   1.06339729e-16   2.06637428e-16
  -1.17215383e-16   1.83677714e-16   1.36549879e-16   1.16006977e-16
   1.29299443e-16  -1.28091037e-16  -4.22942105e-17  -2.41681203e-18
   1.26882631e-16  -8.94220450e-17   8.21716089e-17  -6.04203007e-17
  -6.52539247e-17  -1.01506105e-16   1.77635684e-16  -4.83362405e-18
  -1.54675970e-16  -7.12959548e-17  -7.25043608e-18   1.16006977e-16
   2.35639173e-16   1.31716255e-16  -3.26269624e-17  -5.67950826e-17
  -1.05131323e-16  -1.52259158e-16   1.13590165e-16   2.22346706e-16
  -4.59194285e-17  -1.06339729e-16   1.93344962e-16  -1.74010466e-15
   2.90017443e-17  -1.00539380e-15   1.26640950e-15  -7.73379848e-17
  -1.30507849e-16   4.83362405e-18  -1.39208373e-15  -3.86689924e-17
  -7.34710856e-16   1.16006977e-16   1.97211861e-15  -9.28055818e-16
  -9.66724811e-16  -2.32013955e-16   6.57372871e-16   2.08812559e-15
  -6.96041864e-16   3.98290622e-15  -1.31474574e-15  -3.48020932e-16
  -3.09351939e-16  -6.18703879e-16  -2.32013955e-16  -2.47481552e-15
  -2.01078761e-15   2.78416745e-15  -1.12140078e-15  -3.67355428e-15
  -4.25358917e-16   7.73379848e-17  -1.54675970e-15  -2.04945660e-15
   1.54675970e-16   1.16006977e-16   1.97211861e-15  -1.43075272e-15
   3.67355428e-15  -2.70682947e-16   7.73379848e-17   2.04945660e-15
  -8.12048841e-16   5.02696901e-16   1.58542869e-15  -3.86689924e-16
   1.27607675e-15  -4.64027909e-16  -5.80034886e-16   3.17085738e-15
   1.12140078e-15  -4.64027909e-16   3.90556823e-15  -3.09351939e-15
  -2.32013955e-15  -1.00539380e-15  -5.41365894e-16  -1.85611164e-15
   2.20413257e-15   1.27607675e-15  -7.73379848e-16  -1.12140078e-15
   2.62949148e-15  -1.43075272e-15   1.08273179e-15   3.01618141e-15
   2.62949148e-15  -1.93344962e-15   1.70143567e-15   9.66724811e-16
  -2.35880854e-15   6.57372871e-16   1.81744264e-15   3.09351939e-16
   2.12679458e-15  -3.20952637e-15   1.12140078e-15   6.57372871e-16
   9.66724811e-16  -1.23740776e-15   2.90017443e-15   1.23740776e-15
  -2.66816048e-15  -5.41365894e-16  -1.19873877e-15   3.05485040e-15
  -2.32013955e-16  -1.12140078e-15   2.24280156e-15   1.77877365e-15
   6.18703879e-16   8.50717833e-16  -3.86689924e-16  -3.32553335e-15
   1.54675970e-16  -8.89386826e-16   1.46942171e-15   2.35880854e-15
  -1.93344962e-16  -1.35341473e-15   4.25358917e-15  -3.09351939e-16
  -5.80034886e-16  -8.50717833e-16  -3.86689924e-17  -1.62409768e-15
  -5.02696901e-16  -7.34710856e-16   2.08812559e-15   1.58542869e-15
  -2.70682947e-15   3.09351939e-16   2.55215350e-15  -7.34710856e-16
  -1.85611164e-15  -1.93344962e-16  -1.46942171e-15  -3.48020932e-16
  -2.12679458e-15   1.89478063e-15  -1.89478063e-15  -5.41365894e-16
   7.34710856e-16   7.73379848e-16  -3.01618141e-15  -2.78416745e-15
  -1.23740776e-15  -9.28055818e-16  -5.02696901e-16  -2.70682947e-16
  -1.54675970e-16   2.08812559e-15  -2.28147055e-15  -8.12048841e-16
  -1.85611164e-15  -8.50717833e-16  -8.50717833e-16   6.96041864e-16
  -1.27607675e-15   3.20952637e-15   5.02696901e-16   5.80034886e-16
   6.18703879e-16  -1.85611164e-15   8.12048841e-16  -8.50717833e-16
   1.54675970e-16   1.54675970e-15  -1.39208373e-15   1.19873877e-15
  -1.54675970e-15   2.16546358e-15   3.09351939e-16  -5.02696901e-16
  -1.62409768e-15   2.32013955e-16  -2.12679458e-15   1.46942171e-15
  -1.12140078e-15   9.66724811e-16   4.25358917e-16   0.00000000e+00
   3.48020932e-16  -4.64027909e-16  -1.16006977e-16   1.12140078e-15
  -1.16006977e-15   0.00000000e+00  -8.50717833e-16  -1.58542869e-15
   7.73379848e-16  -1.74010466e-15  -3.28686436e-15  -1.35341473e-15
   5.02696901e-16  -1.54675970e-16  -2.51348451e-15  -9.66724811e-16
   1.46942171e-15   5.02696901e-16  -3.09351939e-16   1.46942171e-15
   2.04945660e-15  -1.08273179e-15  -5.02696901e-16   6.57372871e-16
  -1.70143567e-15   1.19873877e-15   1.66276667e-15   1.12140078e-15
  -2.62949148e-15  -1.93344962e-16   2.70682947e-16   1.12140078e-15
  -2.32013955e-15   1.27607675e-15   1.85611164e-15   1.04406280e-15
  -1.00539380e-15   8.89386826e-16   1.54675970e-16   1.04406280e-15
  -6.18703879e-16  -3.48020932e-16  -3.09351939e-15  -1.19873877e-15
   1.12140078e-15  -2.62949148e-15   9.66724811e-16  -2.04945660e-15
  -2.43614652e-15   3.09351939e-16   1.97211861e-15   3.09351939e-16
  -9.66724811e-16  -1.54675970e-16   6.18703879e-16  -1.46942171e-15
  -8.50717833e-16  -1.27607675e-15   5.22031398e-15   1.08273179e-15
   8.12048841e-16  -1.93344962e-15   3.86689924e-17  -1.54675970e-15
   2.20413257e-15  -2.32013955e-16   1.27607675e-15   9.66724811e-16
   2.90017443e-15  -9.66724811e-16  -1.16006977e-16  -6.96041864e-16
   1.97211861e-15   2.51348451e-15   1.16006977e-16  -1.97211861e-15
  -8.50717833e-16   8.12048841e-16  -1.46942171e-15  -4.25358917e-16
  -1.31474574e-15  -7.73379848e-17   1.74010466e-15   9.28055818e-16
   1.23740776e-15  -1.08273179e-15   2.70682947e-16  -2.16546358e-15
   1.54675970e-16  -1.16006977e-16   1.66276667e-15  -8.12048841e-16
  -1.93344962e-15   6.96041864e-16   7.34710856e-16  -1.00539380e-15
  -7.73379848e-16  -1.62409768e-15  -6.96041864e-16  -2.90017443e-15
   7.73379848e-17  -3.48020932e-16   1.16006977e-16  -7.34710856e-16
   5.41365894e-16  -2.32013955e-16   5.02696901e-16  -1.08273179e-15
   1.97211861e-15   8.12048841e-16  -1.35341473e-15  -1.58542869e-15
  -8.50717833e-16  -1.04406280e-15  -2.12679458e-15   4.64027909e-16
  -1.00539380e-15   1.62409768e-15   1.19873877e-15   3.09351939e-16
   1.85611164e-15   4.64027909e-16   2.12679458e-15   5.02696901e-16
   1.93344962e-16   1.23740776e-15   1.54675970e-16  -3.48020932e-16
  -1.97211861e-15   0.00000000e+00   4.64027909e-16   1.19873877e-15
  -2.43614652e-15  -8.89386826e-16  -3.48020932e-16   1.16006977e-16
  -6.57372871e-16   8.12048841e-16  -3.48020932e-16   1.54675970e-16
   1.54675970e-15   1.19873877e-15   1.08273179e-15   7.73379848e-17
  -4.25358917e-16   5.41365894e-16  -2.43614652e-15  -1.43075272e-15
  -3.13218839e-15  -9.28055818e-16  -1.66276667e-15  -1.81744264e-15
  -1.77877365e-15   1.31474574e-15  -1.97211861e-15   5.02696901e-16
   3.63488529e-15  -4.25358917e-16   2.08812559e-15  -8.89386826e-16
   1.39208373e-15   2.08812559e-15   2.39747753e-15  -4.25358917e-16
   3.51887831e-15   3.51887831e-15   7.34710856e-16   1.27607675e-15
   5.41365894e-16  -7.73379848e-17  -1.08273179e-15  -1.46942171e-15
   2.32013955e-16  -8.50717833e-16  -2.20413257e-15   7.73379848e-16
   1.04406280e-15   2.24280156e-15  -1.62409768e-15   3.09351939e-15
   3.24819536e-15  -9.28055818e-16  -1.77877365e-15  -1.12140078e-15
   8.50717833e-16  -1.54675970e-15  -1.08273179e-15   6.18703879e-16
  -2.16546358e-15   0.00000000e+00   7.73379848e-17   2.35880854e-15
  -3.32553335e-15  -3.09351939e-16   3.86689924e-17   1.74010466e-15
   1.16006977e-15  -6.57372871e-16   1.12140078e-15   1.00539380e-15
  -8.89386826e-16   1.89478063e-15   6.57372871e-16   1.97211861e-15
   1.31474574e-15   6.18703879e-16  -2.20413257e-15   2.78416745e-15
  -1.58542869e-15   2.16546358e-15   1.46942171e-15   1.23740776e-15
  -3.09351939e-16  -4.25358917e-16   2.20413257e-15  -1.08273179e-15
   1.35341473e-15   1.54675970e-15  -6.18703879e-16   8.12048841e-16
   4.64027909e-16  -1.16006977e-15   1.16006977e-16  -3.09351939e-16
  -3.17085738e-15   2.04945660e-15  -3.20952637e-15  -4.25358917e-16
   1.66276667e-15  -5.02696901e-16   1.54675970e-16  -1.66276667e-15
  -1.93344962e-15   3.09351939e-16   8.12048841e-16   5.02696901e-16
  -1.23740776e-15  -6.57372871e-16   2.08812559e-15  -1.04406280e-15
   1.35341473e-15   1.16006977e-16   6.96041864e-16  -1.16006977e-15
  -1.27607675e-15   1.85611164e-15   6.96041864e-16   1.31474574e-15
   1.12140078e-15  -8.89386826e-16  -2.86150544e-15   2.70682947e-16
  -1.12140078e-15  -8.89386826e-16  -2.55215350e-15  -1.62409768e-15
   3.01618141e-15   3.28686436e-15  -1.81744264e-15   2.32013955e-15
  -7.73379848e-16   1.97211861e-15   0.00000000e+00   1.93344962e-15
   9.28055818e-16   4.25358917e-16   1.39208373e-15   2.35880854e-15
   5.80034886e-16  -1.54675970e-15  -1.16006977e-16  -2.04945660e-15
  -1.54675970e-15   7.73379848e-17   7.34710856e-16  -7.73379848e-16
  -3.86689924e-16   1.43075272e-15   1.23740776e-15  -2.20413257e-15
  -2.55215350e-15  -3.48020932e-16  -3.86689924e-16  -3.09351939e-16
  -1.54675970e-16  -1.58542869e-15   1.00539380e-15   2.78416745e-15
  -1.54675970e-16   2.12679458e-15   2.51348451e-15   8.89386826e-16
   3.36420234e-15  -2.39747753e-15   2.74549846e-15   2.59082249e-15
  -1.08273179e-15   3.09351939e-16  -3.86689924e-17  -1.74010466e-15
   3.09351939e-16   7.73379848e-17  -3.13218839e-15   2.62949148e-15
  -8.50717833e-16   1.35341473e-15   3.17085738e-15  -4.09891320e-15
  -5.41365894e-16  -7.73379848e-17   4.64027909e-16   5.41365894e-16
   3.67355428e-15   2.86150544e-15   5.02696901e-16  -7.34710856e-16
   1.77877365e-15  -1.12140078e-15   5.41365894e-16   1.00539380e-15
  -1.31474574e-15  -1.00539380e-15  -3.86689924e-17   1.74010466e-15
   2.20413257e-15   7.73379848e-16   1.23740776e-15  -4.25358917e-16
  -1.31474574e-15   1.08273179e-15  -6.57372871e-16   8.12048841e-16
   7.73379848e-16  -2.16546358e-15  -2.70682947e-16  -5.41365894e-16
  -1.04406280e-15  -1.00539380e-15   5.80034886e-16   7.73379848e-17
   3.24819536e-15   8.89386826e-16   1.31474574e-15  -6.96041864e-16
   3.20952637e-15  -3.48020932e-16  -3.51887831e-15  -8.12048841e-16
  -4.64027909e-16  -2.66816048e-15  -2.66816048e-15   0.00000000e+00
   6.18703879e-16   3.48020932e-16   1.62409768e-15   9.66724811e-16
  -3.09351939e-16  -1.46942171e-15   7.73379848e-17   1.77877365e-15
  -1.54675970e-16   1.54675970e-16   7.73379848e-16   2.66816048e-15
   5.41365894e-16  -5.80034886e-16  -8.89386826e-16   1.46942171e-15
   5.80034886e-16   1.54675970e-16   5.02696901e-16  -6.18703879e-16
   1.66276667e-15   2.32013955e-16  -1.89478063e-15   3.86689924e-16
  -1.27607675e-15   1.66276667e-15  -7.34710856e-16   1.31474574e-15
  -3.86689924e-17   9.66724811e-16   8.12048841e-16   1.93344962e-15
  -2.43614652e-15   2.32013955e-16   1.85611164e-15  -9.28055818e-16
   2.78416745e-15   1.08273179e-15  -1.31474574e-15  -1.16006977e-16
  -4.25358917e-16   6.18703879e-16  -3.48020932e-16   6.57372871e-16
  -2.70682947e-16  -2.47481552e-15  -7.73379848e-17   1.39208373e-15
  -1.46942171e-15   1.54675970e-15   4.25358917e-16   5.80034886e-16
  -3.48020932e-16   2.20413257e-15   8.50717833e-16   1.43075272e-15
   0.00000000e+00   1.00539380e-15  -1.27607675e-15  -1.62409768e-15
   2.90017443e-15  -1.43075272e-15  -5.41365894e-16  -1.39208373e-15
  -1.74010466e-15  -1.00539380e-15   1.19873877e-15   2.70682947e-16
  -2.08812559e-15  -1.66276667e-15   1.35341473e-15   1.43075272e-15
   1.31474574e-15   2.47481552e-15   5.80034886e-16  -1.77877365e-15
  -3.67355428e-15  -1.81744264e-15  -1.23740776e-15  -4.06024420e-15
  -2.04945660e-15  -2.12679458e-15  -6.57372871e-16  -7.73379848e-16
  -3.86689924e-16   1.27607675e-15   1.23740776e-15  -1.93344962e-16
   1.35341473e-15   3.86689924e-17  -1.31474574e-15  -6.57372871e-16
   1.89478063e-15   2.86150544e-15  -7.73379848e-17   2.32013955e-16
  -1.19873877e-15   1.16006977e-16  -3.13218839e-15   1.74010466e-15
  -1.70143567e-15   8.50717833e-16   2.93884342e-15  -2.24280156e-15
  -1.54675970e-16  -1.08273179e-15   3.86689924e-16   2.70682947e-16
  -1.70143567e-15   3.86689924e-16  -1.74010466e-15  -8.21716089e-17
   2.22346706e-16   9.90892931e-16   5.70367638e-16   1.21807326e-15
  -5.89702134e-16   1.74010466e-16  -1.16973702e-15   7.73379848e-17
  -4.20525293e-16  -4.44693413e-16   5.80034886e-17   5.05113714e-16
   6.13870255e-16  -5.80034886e-16  -1.11173353e-16  -1.06339729e-16
   1.12623440e-15   2.80350195e-16  -3.28686436e-16  -2.36847579e-16
  -1.25674225e-16  -1.79327452e-15   8.41050585e-16  -4.97863277e-16
   7.58878976e-16  -1.41141822e-15   5.94535758e-16   8.41050585e-16
   5.51033142e-16   9.18388570e-17   3.52854556e-16  -5.41365894e-16
  -1.38725010e-15  -2.99684691e-16  -2.17513082e-16  -1.16006977e-16
  -1.11173353e-16  -3.33520060e-16  -9.66724811e-17   3.14185563e-16
  -3.77022676e-16   2.41681203e-17   4.97863277e-16  -1.93344962e-16
  -6.09036631e-16   9.37723066e-16   4.15691669e-16   1.20840601e-16
  -7.15376360e-16  -5.31698646e-17  -1.13590165e-15  -4.64027909e-16
  -6.28371127e-16   2.22346706e-16  -2.32013955e-16  -2.61015699e-16
  -1.64343218e-16  -2.36847579e-16   9.47390314e-16   6.09036631e-16
  -4.97863277e-16   2.78900108e-15  -9.08721322e-16   3.28686436e-16
   2.61015699e-16  -7.25043608e-17  -5.55866766e-16   2.61015699e-16
  -1.08273179e-15  -6.76707367e-16   4.39859789e-16   1.72077016e-15
   2.51348451e-16  -4.78528781e-16  -2.70682947e-16  -9.66724811e-17
   4.35026165e-16   1.13590165e-15   1.74010466e-16  -4.78528781e-16
   2.65849323e-16   8.41050585e-16   6.42871999e-16  -4.97863277e-16
   8.16882465e-16  -4.54360661e-16   4.15691669e-16  -4.59194285e-16
  -4.35026165e-16   7.54045352e-16  -1.61443043e-15  -1.54675970e-16
  -3.57688180e-16  -9.18388570e-17  -2.90017443e-16  -1.93344962e-17
  -9.66724811e-18  -8.45884209e-16   6.42871999e-16  -1.16006977e-16
   2.56182075e-16   3.86689924e-17   2.94851067e-16  -7.34710856e-16
   6.04203007e-16  -2.03012210e-16  -2.41681203e-17  -5.80034886e-17
   2.03012210e-16   2.22346706e-16  -3.86689924e-16  -3.28686436e-16
   3.62521804e-16  -6.42871999e-16   4.54360661e-16  -1.83677714e-16
  -3.57688180e-16   3.86689924e-17  -6.38038375e-16  -1.11173353e-16
  -4.25358917e-16  -5.99369383e-16   7.00875488e-16  -6.23537503e-16
  -9.66724811e-18   3.33520060e-16   2.41681203e-16   5.75201262e-16
  -6.91208240e-16   2.80350195e-16  -7.25043608e-17  -1.74010466e-16
   4.39859789e-16   1.45008722e-17   7.73379848e-17  -1.27607675e-15
  -2.65849323e-16  -1.49842346e-16  -8.70052330e-17   2.03012210e-16
   2.12679458e-16   3.86689924e-17   3.19019187e-16  -2.17513082e-16
   4.83362405e-18   2.07845834e-16   3.67355428e-16  -5.46199518e-16
  -4.83362405e-17   4.83362405e-18  -2.70682947e-16  -4.64027909e-16
   9.18388570e-17  -6.76707367e-17   2.99684691e-16   7.25043608e-17
  -2.41681203e-17  -7.34710856e-16  -2.12679458e-16   5.22031398e-16
  -2.07845834e-16  -7.39544480e-16   2.41681203e-17  -2.70682947e-16
  -6.47705623e-16   6.28371127e-17  -1.45008722e-17  -3.28686436e-16
  -3.23852812e-16  -4.83362405e-16  -5.80034886e-16   6.86374615e-16
   1.54675970e-16   5.80034886e-16   3.52854556e-16  -1.74010466e-16
   0.00000000e+00  -5.94535758e-16   4.35026165e-16  -2.46514827e-16
   8.36216961e-16   1.06339729e-16   1.45008722e-16   8.07215217e-16
   3.38353684e-17   2.46514827e-16   4.88196029e-16   3.96357172e-16
  -3.14185563e-16   2.75516571e-16  -1.45008722e-17   5.02696901e-16
  -4.35026165e-17  -1.69176842e-16   3.23852812e-16  -7.25043608e-16
  -2.12679458e-16   4.83362405e-17  -8.55551457e-16   6.18703879e-16]
20
(20, 1000) [[  3.87903357e-02   3.87903357e-02   5.58406726e-03 ...,   8.50946222e-03
    8.47000548e-03   1.18427268e-02]
 [ -5.15837819e-03  -5.15837819e-03   5.48118904e-02 ...,   5.62580581e-02
    5.62652862e-02   4.71093465e-02]
 [  3.83242683e-03   3.83242683e-03  -6.76627946e-02 ...,   3.10152767e-02
    3.14011154e-02   2.70820650e-02]
 ..., 
 [ -1.40854392e-02  -1.40854392e-02  -1.71955764e-03 ...,  -1.17382366e-03
   -4.45750840e-03   2.05775486e-01]
 [  7.36843671e-03   7.36843671e-03   2.73403361e-04 ...,  -1.24472476e-04
   -2.00925955e-03   9.97355238e-03]
 [  1.93997330e-03   1.93997330e-03  -5.64179297e-06 ...,  -2.04918990e-03
    1.73513780e-03   3.36356746e-02]]
[ 23.34370374  23.34370374  16.61966863  24.59337382  17.58007415
 -13.31345094 -17.64292953 -16.35837236  23.34370374  -4.93201122
  -5.33392351  -3.72544098  -1.08593751  -3.83144071  -1.51437273
  -0.3707299   -0.82366687  -2.08798002  -1.97964752  -2.1104275
  -2.13099999  -6.33189097  -3.70836569  -3.61885884  -3.66415485
  -4.12549493  -2.74075285  -7.31359563  -3.81129878  -4.61390076
  -5.02176815  -6.6458385   -7.42215539  -5.00225347  -7.66177402
  -6.5303392   -9.94540774  -9.89590205  -7.58627561 -10.62367032
  -9.3713918  -10.82788577  -8.42562972 -12.77832342 -11.84205457
  -9.98992749 -13.94986308 -10.61376492 -12.79321626 -11.95581506
 -14.12203012 -13.82524306  14.99547382  16.01645531  16.10108802
  15.90718883  15.62909803  16.36813014  15.83768238  15.07927745
  15.51937334  15.62583688  14.7696783   16.37899354  14.68148892
  15.71767608  15.92499038  16.19507901  16.20228653  16.03924705
  17.0408461   16.17014716  16.00829776  15.73784521  15.92823243
  16.04662889  16.43946159  16.04509546  16.25112413  16.18520059
  16.2506335   16.62860837  16.21061602  16.31789604  16.45220651
  16.15682145  16.45784587  16.39196259  16.46294381  16.09588712
  16.73562891  16.38138645  16.41815771  16.72044556  16.18452329
  16.28621861  16.43992859  16.46525449  16.22964573  16.39244814
  16.5925863   16.14982363  16.25767396  16.57212095  16.33263859
  16.4366363   16.50525387  16.3895086   16.12065998  16.65100568
  16.26770928  16.53717918  16.51672547  16.40420088  16.25258873
  16.34449122  16.48048366  16.2680085   16.4972413   16.47054934
  16.36036095  16.46724212  16.42685679  16.4725842   16.25508862
  16.56478593  16.49054347  16.34180295  16.4743532   16.35515529
  16.37893972  15.96796879  16.72770495  16.12257531  16.14115609
  16.53573432  16.40159832  16.46675438  16.55574958  16.59381505
  16.19040632  16.38480735  16.59975844  16.13292753  16.48966916
  16.29187138  16.34598639  16.4283661   16.49201293  16.36110308
  16.15090263  16.38063545  16.328005    16.30814992  16.49232946
  16.60055537  16.49370318  16.38522426  16.4888997   16.38572502
  16.43203807  16.45612615  16.48539634  16.34320529  16.66525239
  16.53000761  16.20136069  16.64168786  16.55398922  16.16929881
  16.32732084  16.4041925   16.39003725  16.47898871  16.53087241
  23.34370374  22.87632887  26.18264313  24.59337382  23.52115504
  19.14404326   0.76778064  23.63265557  23.63258723  23.63251468
  23.63243176  23.63233847  23.63223133  23.63211564  23.63199261
  23.63186462  23.6317214   23.63156637  23.63140952  23.63087275
  23.6306759   23.62875416  23.62847574  23.62818984  23.62788967
  23.62758645  23.62726693  23.6269471   23.626604    23.62626762
  23.62592113  23.62556851  23.62520352  23.62482488  23.62444106
  23.62325874  23.62284362  23.62242423  23.62199958  23.62157273
  23.62112881  23.62068485  23.6202289   23.61976756  23.61929432
  23.61882126  23.61833601  23.61784735  23.61735123  23.61685238
  23.61634657  23.61582839  23.61530492  23.61477458  23.6142408
  23.61370512  23.61315809  23.61260754  23.61205276  23.61148239
  23.61090769  23.61032765  23.60973313  23.60914327  23.60853587
  23.60791984  23.60729476  23.6066715   23.60602992  23.60538175
  23.60472268  23.60405901  23.60337881  23.60269826  23.60200706
  23.60130677  23.60060116  23.59988709  23.59916154  23.59841947
  23.59767419  23.59692786  23.59617074  23.59540002  23.59461636
  23.59382711  23.5930238   23.59221324  23.59139626  23.59056765
  23.58972625  23.58888179  23.58802926  23.58717036  23.58629954
  23.58541257  23.58452438  23.58362277  23.58271567  23.58180435
  23.58087801  23.57995041  23.5790194   23.57807875  23.57712994
  23.5761758   23.57522166  23.57425464  23.57328294  23.57231014
  23.57132931  23.57033655  23.56933636  23.56833768  23.5673328
  23.5663177   23.56529953  23.56427097  23.56324604  23.56221407
  23.56117811  23.56013196  23.55907411  23.55800908  23.55694449
  23.55587703  23.55479173  23.55370374  23.55261012  23.55150681
  23.55039193  23.54927603  23.54814964  23.54701809  23.545875
  23.54473107  23.54357621  23.5424152   23.54124773  23.54007394
  23.53890049  23.53771809  23.53652752  23.53532817  23.53412791
  23.5329152   23.53170608  23.5304913   23.52926557  23.52803864
  23.52681652  23.52558488  23.52434955  23.52311106  23.52186824
  23.52061632  23.51935816  23.51810516  23.51684564  23.51557946
  23.51431682  23.51304371  23.51176362  23.51047862  23.50919915
  23.50790312  23.50660522  23.50531124  23.50400329  23.50269399
  23.50137864  23.50006997  23.4987545   23.49743595  23.49611102
  23.49478158  23.49344898  23.49211096  23.4907682   23.4894202
  23.48806337  23.48670803  23.48534771  23.48397668  23.48261364
  23.48124308  23.47987253  23.47849567  23.47712235  23.47574154
  23.47434935  23.47295943  23.47156826  23.47017376  23.46876619
  23.46736334  23.4659435   23.46453252  23.46311609  23.46169647
  23.4602663   23.45884223  23.45740765  23.45597005  23.45452661
  23.45306856  23.4516074   23.45013859  23.4486655   23.44718576
  23.44570173  23.44420684  23.44270975  23.44120561  23.439707    23.4381909
  23.43667924  23.43515934  23.43363253  23.43209575  23.43055538
  23.42901331  23.42745573  23.4259024   23.42434242  23.42277727
  23.42120233  23.41962249  23.41804288  23.41646342  23.41487754
  23.41328136  23.41168718  23.41008585  23.4084831   23.40688015
  23.40527269  23.40366518  23.40204625  23.40042474  23.39879934
  23.39717539  23.39553363  23.39389966  23.39225887  23.39060962
  23.3889597   23.38729703  23.38563607  23.38397466  23.38231259
  23.38064327  23.3789776   23.37730949  23.37562958  23.3739536
  23.37227372  23.37059176  23.36890303  23.36721671  23.36552332
  23.36383865  23.36215079  23.36046344  23.35876102  23.35706845
  23.35537454  23.35368098  23.35198532  23.35029894  23.3486118
  23.34692294  23.34524192  23.34356753  23.34188796  23.34021291
  23.33853727  23.33687116  23.3352067   23.33354266  23.33186765
  23.33021132  23.32855605  23.32690104  23.32524771  23.32359475
  23.32194717  23.32029962  23.31864788  23.31700356  23.31535571
  23.31370771  23.31206592  23.31045889  23.3088512   23.30723882
  23.30563126  23.30403345  23.30242462  23.3008139   23.29921257
  23.29760759  23.29599561  23.2943992   23.29278738  23.29116516
  23.28954846  23.28792752  23.28630406  23.28467812  23.28305147
  23.28142576  23.27979995  23.27817387  23.27655315  23.27493539
  23.27332803  23.27172259  23.27011872  23.26851896  23.26692151
  23.26532088  23.2637276   23.26213553  23.26055014  23.25897016
  23.25738632  23.25581217  23.25423163  23.25266251  23.2510957
  23.24953188  23.2479646   23.24639651  23.24483403  23.24326653
  23.24170842  23.24014655  23.23858725  23.23702222  23.23547013
  23.23391199  23.23236421  23.23080955  23.22925579  23.22771399
  23.22617546  23.22463561  23.22309406  23.22154843  23.22000782
  23.21847935  23.21694165  23.2154124   23.21388482  23.21236621
  23.21084548  23.20932344  23.20780381  23.20629238  23.20478295
  23.20327932  23.20175669  23.20025274  23.19875172  23.19724677
  23.19573852  23.19423135  23.19272831  23.19121457  23.18969771
  23.18819112  23.18667703  23.18514884  23.1836368   23.18211692
  23.18059908  23.17907397  23.17755193  23.17600848  23.17447972
  23.1729409   23.17140358  23.16986076  23.16831755  23.16677282
  23.16522318  23.16368021  23.16213374  23.16058669  23.1590319
  23.1574763   23.15591862  23.15436965  23.15281278  23.15127078
  23.14971871  23.14818194  23.14664954  23.14511934  23.14359401
  23.14207189  23.14056064  23.13904428  23.13753666  23.13602694
  23.13452679  23.13302359  23.13151926  23.13001886  23.12851434
  23.12701482  23.09642751  23.06616547  23.06463249  23.05210443
  23.05051371  23.0489167   23.04731133  23.04568928  23.04406352
  23.04243141  23.04079854  23.0391489   23.03748831  23.03581311
  23.03413002  23.03244428  23.03073982  23.0290271   23.02730876
  23.0255853   23.02383638  23.02209158  23.02035238  23.01859605
  23.01684091  23.01507185  23.01330848  23.01154618  23.0097724
  23.00799606  23.00621651  23.00442681  23.0026436   23.00085918
  22.99906743  22.997274    22.99547203  22.99367838  22.99186554
  22.99007009  22.98826639  22.98645098  22.98465592  22.98286337
  22.98106794  22.97927536  22.97749438  22.975709    22.97393286
  22.9721563   22.97038886  22.96863111  22.96687943  22.96512199
  22.96335941  22.96160682  22.9598647   22.95812657  22.95638931
  22.95464623  22.95290428  22.95117734  22.94945611  22.94772186
  22.94599106  22.94426378  22.9425453   22.94082153  22.93910945
  22.93739418  22.93567949  22.93396521  22.93225679  22.93054608
  22.92883654  22.92712183  22.92541017  22.92368891  22.92197726
  22.92025384  22.91852403  22.91679139  22.91505344  22.91332016
  22.90273291  22.90095584  22.89916622  22.89737634  22.89557634
  22.89377242  22.89195512  22.89014839  22.88832287  22.88651176
  22.88469837  22.88106449  22.87925029  22.87747657  22.87571541
  22.87393992  22.87216878  22.87040136  22.86861879  22.86683998
  22.86505622  22.86327713  22.86149571  22.85969844  22.85791148
  22.85611502  22.8543184   22.8525105   22.85068293  22.84885725
  22.84701485  22.84517364  22.843304    22.84144671  22.83956903
  22.83770593  22.83581852  22.83393369  22.83204658  22.83016593
  22.82828384  22.82640274  22.82451223  22.82262493  22.82073571
  22.81883712  22.8169519   22.81506029  22.81317624  22.81126977
  22.80937998  22.80749427  22.80561241  22.79616539  22.79237452
  22.79049837  22.78860995  22.78671781  22.78482234  22.78294102
  22.78104743  22.77912628  22.77722986  22.77532315  22.77341195
  22.77148346  22.76762337  22.76569846  22.76375551  22.76180723
  22.74399536  22.67177399  22.66948058  22.66255966  22.66023629
  22.6579258   22.65562896  22.65331392  22.65097851  22.64866456
  22.64631454  22.64397243  22.64162835  22.63927147  22.63689094
  22.63451569  22.63213385  22.62967524  22.62720733  22.62471302
  22.62223112  22.61971478  22.48501717  22.44245143  22.42558276
  22.42279125  22.42002396  22.41170917  22.40895431  22.39529152
  22.39258177  22.38988067  22.3872009   22.31798059  22.30460717
  22.3019372   22.29925894  22.29656635  22.29384957  22.2911369
  22.28844233  22.28572633  22.18613547  22.18341486  22.17797207
  22.1752447   22.17256751  22.16991016  22.1672251   22.16451343
  22.08110729  22.07039775  22.06775103  22.04703258  22.04450303
  22.04200861  22.0394978   23.34370374  20.75798546  23.14735803
  24.36350189  24.13191149  24.2311513   24.40449921  24.74271222
  25.41699603  25.0937944   25.06011687  24.95514654  24.34095147
  23.87808929  24.74252964  24.8344169   24.57048945  24.09124474
  24.39397891  24.38007597  24.1055562   24.62411666  24.67117905
  24.34410504  23.95578849  23.82157464  24.40465727  23.96512034
  23.99098649  23.9294603   23.7038475   24.11823099  23.80699104
  23.57637891  23.97058046  23.59043915  23.57655877  23.69484837
  23.70802936  23.36169699  23.51999448  23.5804148   23.50356358
  23.6439478   23.53204558  23.50050534  23.49261718  23.43676655
  23.40028792  23.52964074  23.42984734  23.2544111   23.33892802
  23.44856073  23.325086    23.41946606  23.3479447   23.3583771
  23.34697632  23.38156875  23.3209938   23.27590047  23.40750105
  23.22490297  23.42695252  23.2674576   23.20904588  23.3708536
  23.29964137  23.21178803  23.33229477  23.34909093  23.41095423
  23.27408548  23.20014926  23.27387805  23.20920242  23.22396315
  23.23258736  23.37923842  23.42626807  23.32796024  23.2512011
  23.17980304  23.15787582  23.0771122   23.20749056  23.03960099
  23.20059257  23.10872679  23.11198183  23.13263963  23.06896015
  23.13245409  23.00752307  23.18724386  23.20133103  22.95987286
  23.09247996  23.03878931  22.24951791  23.24516603  17.5137061
  20.65601279  22.23330934  22.47829054  22.61808443  22.96151162
  23.44067089  24.02417395  23.88626104  23.60806442  24.04444729
  23.14764725  22.72920138  23.45734057  23.55989248  23.2600668
  22.92508182  23.0044021   23.07245172  22.82462303  23.32066962
  23.63631375  23.28206361  22.75029156  22.7356977   23.00528846
  22.9149577   22.89682356  22.83544937  22.64637081  22.87188668
  22.78534259  22.66029791  22.83312851  22.64411809  22.70761636
  22.67779793  22.73028107  22.52156914  22.65553751  22.64211363
  22.60635201  22.71117062  22.64611187  22.62078076  22.67198276
  22.6169035   22.59490934  22.65419463  22.60664739  22.55044775
  22.53043351  22.54849123  22.54089029  22.60546071  22.59953656
  22.64334754  22.56693264  22.61928595  22.52590068  22.57279791
  22.60212844  22.55628135  22.62986308  22.57259672  22.5401947
  22.60539978  22.57420377  22.48357088  22.5433579   22.60970187
  22.68821789  22.59025836  22.52438826  22.50419812  22.58165881
  22.56406825  22.58250647  22.57951854  22.75519724  22.61068528
  22.6105841   22.5679024   22.58419156  22.48304507  22.55426426
  22.54104207  22.56332796  22.5421391   22.51581955  22.55978752
  22.53820437  22.55936581  22.46220325  22.55602036  22.5577153
  22.45302829  22.54950176  22.4796562   21.78903465]
['reFFT156' 'imFFT272' 'imFFT273' 'imFFT274' 'imFFT275' 'imFFT279'
 'imFFT271' 'imFFT278' 'imFFT286' 'imFFT285' 'ssi' 'reFFT157' 'imFFT280'
 'imFFT290' 'imFFT270' 'imFFT282' 'imFFT283' 'imFFT267' 'imFFT287'
 'imFFT276' 'imFFT269' 'imFFT268' 'imFFT295' 'imFFT284' 'imFFT281'
 'imFFT376' 'imFFT373' 'imFFT292' 'imFFT298' 'imFFT291' 'imFFT288'
 'imFFT293' 'imFFT374' 'imFFT277' 'imFFT289' 'imFFT296' 'imFFT302'
 'imFFT294' 'imFFT301' 'imFFT307' 'imFFT387' 'reFFT161' 'reFFT162'
 'reFFT163' 'reFFT164' 'reFFT165' 'reFFT166' 'reFFT167' 'reFFT168'
 'reFFT169' 'reFFT170' 'reFFT171' 'reFFT172' 'reFFT173' 'reFFT174'
 'reFFT175' 'reFFT176' 'reFFT177' 'reFFT178' 'reFFT179' 'reFFT180'
 'reFFT181' 'reFFT182' 'reFFT183' 'reFFT184' 'reFFT185' 'reFFT186'
 'reFFT187' 'reFFT188' 'reFFT189' 'reFFT190' 'reFFT191' 'reFFT192'
 'reFFT193' 'reFFT194' 'reFFT195' 'reFFT196' 'reFFT197' 'reFFT198'
 'reFFT199' 'reFFT200' 'reFFT201' 'reFFT202' 'reFFT203' 'reFFT204'
 'reFFT205' 'reFFT206' 'reFFT207' 'reFFT208' 'reFFT209' 'reFFT210'
 'reFFT211' 'reFFT212' 'reFFT213' 'reFFT214' 'reFFT215' 'reFFT216'
 'reFFT217' 'reFFT218' 'imFFT375' 'reFFT219' 'reFFT220' 'reFFT221'
 'reFFT222' 'reFFT223' 'reFFT224' 'reFFT225' 'reFFT226' 'reFFT227'
 'reFFT228' 'reFFT229' 'reFFT230' 'reFFT231' 'reFFT232' 'reFFT233'
 'reFFT234' 'reFFT235' 'reFFT236' 'reFFT237' 'reFFT238' 'reFFT239'
 'reFFT240' 'reFFT241' 'reFFT242' 'reFFT243' 'imFFT299' 'reFFT244'
 'reFFT245' 'reFFT246' 'reFFT247' 'reFFT248' 'reFFT249' 'reFFT250'
 'reFFT251' 'reFFT252' 'reFFT253' 'reFFT254' 'imFFT305' 'reFFT255'
 'reFFT256' 'reFFT257' 'reFFT258' 'imFFT300' 'imFFT297' 'reFFT259'
 'reFFT260' 'reFFT261' 'reFFT262' 'reFFT263' 'reFFT264' 'reFFT265'
 'reFFT266' 'reFFT267' 'reFFT268' 'reFFT269' 'reFFT270' 'reFFT271'
 'reFFT272' 'reFFT273' 'reFFT274' 'reFFT275' 'imFFT380' 'reFFT276'
 'reFFT277' 'reFFT278' 'reFFT279' 'reFFT280' 'reFFT281' 'reFFT282'
 'reFFT283' 'reFFT284' 'reFFT285' 'reFFT286' 'reFFT287' 'reFFT288'
 'reFFT289' 'reFFT290' 'reFFT291' 'reFFT292' 'reFFT293' 'reFFT294'
 'reFFT295' 'reFFT296' 'reFFT297' 'reFFT298' 'reFFT299' 'imFFT308'
 'reFFT300' 'reFFT301' 'imFFT313' 'reFFT302' 'reFFT303' 'reFFT304'
 'reFFT305' 'reFFT306' 'reFFT307' 'reFFT308' 'reFFT158' 'reFFT309'
 'imFFT304' 'reFFT310' 'reFFT311' 'reFFT312' 'reFFT313' 'reFFT314'
 'reFFT315' 'reFFT316' 'reFFT317' 'reFFT318' 'reFFT319' 'reFFT320'
 'reFFT321' 'reFFT322' 'imFFT306' 'reFFT323' 'reFFT324' 'imFFT309'
 'reFFT325' 'reFFT326' 'reFFT327' 'reFFT328' 'reFFT329' 'reFFT330'
 'imFFT310' 'reFFT331' 'reFFT332' 'reFFT333' 'reFFT334' 'reFFT335'
 'reFFT336' 'reFFT337' 'reFFT338' 'reFFT339' 'reFFT340' 'reFFT341'
 'reFFT342' 'reFFT343' 'reFFT344' 'reFFT345' 'reFFT346' 'reFFT347'
 'reFFT348' 'reFFT349' 'reFFT350' 'reFFT351' 'reFFT352' 'reFFT353'
 'reFFT354' 'reFFT355' 'reFFT356' 'imFFT379' 'reFFT357' 'reFFT358'
 'reFFT359' 'reFFT360' 'reFFT361' 'reFFT362' 'imFFT317' 'reFFT363'
 'reFFT364' 'reFFT365' 'reFFT366' 'reFFT367' 'imFFT372' 'reFFT368'
 'reFFT369' 'imFFT311' 'reFFT370' 'reFFT371' 'reFFT372' 'reFFT373'
 'reFFT374' 'imFFT314' 'reFFT375' 'reFFT376' 'imFFT328' 'imFFT344'
 'reFFT377' 'reFFT378' 'reFFT379' 'reFFT380' 'reFFT381' 'imFFT319'
 'reFFT382' 'reFFT383' 'reFFT384' 'reFFT385' 'reFFT386' 'imFFT336'
 'reFFT387' 'reFFT388' 'imFFT326' 'reFFT389' 'reFFT390' 'reFFT391'
 'reFFT392' 'reFFT393' 'imFFT312' 'reFFT394' 'reFFT395' 'reFFT396'
 'reFFT397' 'reFFT398' 'reFFT399' 'reFFT400' 'reFFT401' 'reFFT402'
 'reFFT403' 'reFFT404' 'imFFT323' 'reFFT405' 'imFFT343' 'reFFT406'
 'reFFT407' 'reFFT408' 'reFFT409' 'reFFT410' 'imFFT331' 'reFFT411'
 'reFFT412' 'reFFT413' 'reFFT414' 'reFFT415' 'reFFT416' 'imFFT303'
 'reFFT417' 'reFFT418' 'imFFT321' 'reFFT419' 'reFFT420' 'reFFT421'
 'reFFT422' 'reFFT423' 'imFFT335' 'reFFT424' 'imFFT320' 'imFFT322'
 'reFFT425' 'reFFT426' 'reFFT154' 'zerox' 'imFFT264' 'meanabs' 'intsgnl'
 'reFFT427' 'reFFT428' 'reFFT429' 'imFFT316' 'reFFT430' 'reFFT431'
 'reFFT432' 'reFFT433' 'imFFT334' 'reFFT434' 'reFFT435' 'reFFT436'
 'imFFT345' 'reFFT437' 'reFFT438' 'imFFT318' 'reFFT439' 'reFFT440'
 'imFFT324' 'imFFT386' 'reFFT441' 'reFFT442' 'reFFT443' 'reFFT444'
 'reFFT445' 'reFFT446' 'reFFT447' 'reFFT448' 'reFFT449' 'reFFT450'
 'reFFT451' 'reFFT452' 'reFFT453' 'imFFT332' 'reFFT454' 'reFFT455'
 'reFFT456' 'reFFT457' 'reFFT458' 'reFFT459' 'reFFT460' 'reFFT461'
 'reFFT462' 'reFFT463' 'reFFT464' 'imFFT388' 'reFFT465' 'reFFT466'
 'reFFT467' 'reFFT468' 'imFFT325' 'reFFT469' 'imFFT337' 'imFFT339'
 'reFFT470' 'reFFT471' 'reFFT472' 'reFFT473' 'imFFT329' 'reFFT474'
 'reFFT475' 'reFFT476' 'reFFT477' 'reFFT478' 'imFFT381' 'reFFT479'
 'reFFT480' 'reFFT481' 'imFFT315' 'reFFT482' 'reFFT483' 'imFFT346'
 'reFFT484' 'reFFT485' 'reFFT486' 'reFFT487' 'imFFT365' 'reFFT488'
 'reFFT489' 'reFFT490' 'reFFT491' 'reFFT492' 'reFFT493' 'reFFT494'
 'reFFT495' 'imFFT342' 'reFFT496' 'reFFT497' 'reFFT498' 'reFFT499'
 'reFFT500' 'imFFT327' 'reFFT501' 'imFFT341' 'reFFT502' 'reFFT503'
 'reFFT504' 'reFFT505' 'reFFT506' 'reFFT507' 'reFFT508' 'reFFT509'
 'imFFT333' 'reFFT510' 'reFFT511' 'imFFT340' 'imFFT330' 'reFFT512'
 'imFFT350' 'imFFT000' 'imFFT001' 'imFFT002' 'imFFT003' 'imFFT360'
 'imFFT352' 'imFFT004' 'imFFT338' 'imFFT005' 'imFFT006' 'imFFT007'
 'imFFT008' 'imFFT009' 'imFFT010' 'imFFT011' 'imFFT012' 'imFFT359'
 'imFFT013' 'imFFT014' 'imFFT015' 'imFFT016' 'imFFT017' 'imFFT347'
 'imFFT018' 'imFFT019' 'imFFT020' 'imFFT021' 'imFFT022' 'imFFT023'
 'imFFT024' 'imFFT025' 'imFFT026' 'imFFT027' 'imFFT028' 'imFFT029'
 'imFFT030' 'imFFT031' 'imFFT348' 'imFFT032' 'imFFT033' 'imFFT034'
 'imFFT035' 'imFFT036' 'imFFT037' 'imFFT038' 'imFFT377' 'imFFT266'
 'imFFT039' 'imFFT040' 'imFFT041' 'imFFT042' 'imFFT043' 'imFFT044'
 'imFFT045' 'imFFT046' 'imFFT047' 'imFFT048' 'imFFT355' 'imFFT357'
 'imFFT049' 'imFFT050' 'imFFT051' 'imFFT052' 'imFFT354' 'imFFT353'
 'imFFT053' 'imFFT362' 'imFFT349' 'imFFT384' 'imFFT356' 'imFFT054'
 'imFFT055' 'imFFT056' 'imFFT057' 'imFFT058' 'imFFT059' 'imFFT060'
 'imFFT061' 'imFFT062' 'imFFT063' 'imFFT351' 'imFFT064' 'imFFT363'
 'imFFT065' 'imFFT066' 'imFFT067' 'imFFT068' 'imFFT069' 'imFFT070'
 'imFFT071' 'imFFT072' 'imFFT073' 'imFFT074' 'imFFT075' 'imFFT076'
 'imFFT077' 'imFFT078' 'imFFT079' 'imFFT080' 'imFFT081' 'imFFT082'
 'imFFT358' 'imFFT083' 'imFFT391' 'imFFT084' 'imFFT383' 'imFFT085'
 'imFFT086' 'imFFT087' 'imFFT088' 'imFFT089' 'imFFT090' 'imFFT091'
 'imFFT092' 'imFFT093' 'imFFT094' 'imFFT095' 'imFFT096' 'imFFT097'
 'imFFT098' 'imFFT099' 'imFFT100' 'imFFT101' 'imFFT102' 'imFFT103'
 'imFFT104' 'imFFT105' 'imFFT106' 'imFFT107' 'imFFT108' 'imFFT371'
 'imFFT361' 'imFFT109' 'imFFT110' 'imFFT111' 'imFFT112' 'imFFT113'
 'imFFT114' 'imFFT115' 'imFFT116' 'imFFT117' 'imFFT118' 'imFFT119'
 'imFFT120' 'imFFT121' 'imFFT122' 'imFFT123' 'imFFT124' 'imFFT125'
 'imFFT126' 'imFFT127' 'imFFT128' 'imFFT129' 'imFFT382' 'imFFT130'
 'imFFT131' 'imFFT132' 'imFFT133' 'imFFT134' 'imFFT135' 'imFFT392'
 'imFFT136' 'imFFT137' 'imFFT138' 'imFFT139' 'imFFT140' 'imFFT393'
 'imFFT141' 'imFFT142' 'imFFT143' 'imFFT144' 'imFFT145' 'imFFT146'
 'imFFT147' 'imFFT148' 'imFFT149' 'imFFT150' 'reFFT155' 'imFFT151'
 'imFFT152' 'imFFT153' 'imFFT396' 'imFFT154' 'imFFT155' 'imFFT156'
 'imFFT157' 'imFFT158' 'imFFT159' 'imFFT160' 'imFFT161' 'imFFT162'
 'imFFT163' 'imFFT164' 'imFFT165' 'imFFT166' 'imFFT167' 'imFFT168'
 'imFFT169' 'imFFT170' 'imFFT171' 'imFFT172' 'imFFT173' 'imFFT394'
 'imFFT174' 'imFFT399' 'imFFT175' 'imFFT176' 'imFFT177' 'imFFT178'
 'imFFT385' 'imFFT179' 'imFFT180' 'imFFT181' 'imFFT182' 'imFFT183'
 'imFFT184' 'imFFT185' 'imFFT186' 'imFFT187' 'imFFT188' 'imFFT189'
 'imFFT190' 'imFFT191' 'imFFT192' 'imFFT193' 'imFFT194' 'imFFT397'
 'imFFT195' 'imFFT196' 'imFFT197' 'imFFT198' 'imFFT199' 'imFFT200'
 'imFFT201' 'imFFT202' 'imFFT203' 'imFFT204' 'imFFT205' 'imFFT206'
 'imFFT445' 'imFFT389' 'imFFT207' 'imFFT390' 'imFFT403' 'imFFT378'
 'imFFT408' 'imFFT401' 'imFFT437' 'imFFT402' 'imFFT411' 'imFFT208'
 'imFFT209' 'imFFT210' 'imFFT398' 'imFFT211' 'imFFT212' 'imFFT213'
 'imFFT405' 'imFFT414' 'imFFT214' 'imFFT215' 'imFFT216' 'imFFT395'
 'imFFT217' 'imFFT409' 'imFFT400' 'imFFT218' 'imFFT422' 'imFFT406'
 'imFFT219' 'imFFT220' 'imFFT221' 'imFFT222' 'imFFT223' 'imFFT429'
 'imFFT224' 'imFFT225' 'imFFT226' 'imFFT227' 'imFFT410' 'imFFT228'
 'imFFT424' 'imFFT370' 'imFFT412' 'imFFT446' 'imFFT447' 'imFFT436'
 'imFFT415' 'imFFT407' 'imFFT420' 'imFFT432' 'imFFT427' 'imFFT421'
 'imFFT413' 'imFFT438' 'imFFT449' 'imFFT443' 'imFFT441' 'imFFT444'
 'imFFT433' 'imFFT426' 'imFFT430' 'imFFT448' 'imFFT423' 'imFFT442'
 'imFFT453' 'imFFT456' 'imFFT458' 'imFFT461' 'imFFT428' 'imFFT460'
 'imFFT451' 'imFFT416' 'imFFT463' 'imFFT418' 'imFFT435' 'imFFT454'
 'imFFT452' 'imFFT419' 'imFFT431' 'imFFT457' 'imFFT417' 'imFFT425'
 'imFFT439' 'imFFT404' 'imFFT455' 'imFFT440' 'imFFT229' 'imFFT434'
 'imFFT450' 'imFFT464' 'imFFT369' 'imFFT459' 'imFFT462' 'imFFT230'
 'imFFT231' 'imFFT232' 'imFFT233' 'imFFT234' 'imFFT235' 'imFFT236'
 'imFFT237' 'imFFT238' 'imFFT239' 'imFFT240' 'imFFT241' 'imFFT242'
 'imFFT243' 'imFFT244' 'imFFT245' 'imFFT246' 'imFFT247' 'imFFT248'
 'imFFT364' 'imFFT368' 'imFFT249' 'imFFT250' 'imFFT251' 'imFFT252'
 'imFFT253' 'imFFT254' 'imFFT255' 'imFFT256' 'imFFT257' 'imFFT258'
 'imFFT259' 'imFFT260' 'imFFT261' 'imFFT262' 'imFFT263' 'imFFT465'
 'imFFT265' 'imFFT367' 'reFFT159' 'var' 'imFFT366' 'reFFT049' 'reFFT069'
 'reFFT111' 'reFFT072' 'reFFT143' 'reFFT088' 'reFFT146' 'reFFT060'
 'meanabsslp' 'reFFT134' 'reFFT121' 'reFFT118' 'reFFT079' 'reFFT082'
 'reFFT104' 'reFFT117' 'reFFT147' 'reFFT090' 'reFFT114' 'reFFT153'
 'reFFT144' 'reFFT091' 'reFFT085' 'reFFT097' 'reFFT135' 'reFFT133'
 'reFFT127' 'reFFT105' 'reFFT123' 'reFFT137' 'reFFT141' 'reFFT095'
 'reFFT152' 'reFFT107' 'reFFT102' 'reFFT098' 'reFFT100' 'reFFT116'
 'reFFT076' 'reFFT067' 'reFFT065' 'reFFT140' 'reFFT063' 'reFFT075'
 'reFFT055' 'reFFT084' 'reFFT139' 'reFFT126' 'reFFT101' 'reFFT071'
 'reFFT092' 'reFFT150' 'reFFT115' 'reFFT078' 'reFFT066' 'reFFT151'
 'reFFT086' 'reFFT138' 'reFFT136' 'reFFT120' 'reFFT070' 'reFFT130'
 'reFFT042' 'reFFT109' 'reFFT036' 'reFFT128' 'reFFT099' 'reFFT108'
 'reFFT125' 'reFFT094' 'reFFT142' 'reFFT106' 'reFFT083' 'reFFT131'
 'reFFT149' 'reFFT062' 'reFFT132' 'reFFT124' 'reFFT074' 'reFFT096'
 'reFFT089' 'reFFT081' 'reFFT103' 'reFFT093' 'reFFT057' 'reFFT059'
 'reFFT077' 'reFFT061' 'reFFT047' 'reFFT145' 'reFFT046' 'reFFT119'
 'reFFT058' 'reFFT073' 'reFFT050' 'reFFT148' 'reFFT064' 'reFFT129'
 'reFFT080' 'reFFT113' 'reFFT122' 'reFFT112' 'reFFT087' 'reFFT033'
 'reFFT068' 'reFFT054' 'reFFT056' 'reFFT048' 'reFFT032' 'reFFT051'
 'reFFT110' 'reFFT053' 'reFFT045' 'reFFT034' 'reFFT037' 'reFFT052'
 'reFFT044' 'reFFT035' 'reFFT040' 'reFFT039' 'reFFT038' 'reFFT031'
 'reFFT041' 'reFFT043' 'reFFT160' 'arco2' 'arco3' 'shist2' 'arco1' 'mdf'
 'mnf' 'mmnf' 'mmdf' 'reFFT005' 'reFFT002' 'reFFT003' 'reFFT001' 'shist1'
 'reFFT007' 'shist3' 'reFFT004' 'reFFT008' 'ssc' 'reFFT012' 'reFFT009'
 'wamp' 'reFFT000' 'reFFT014' 'reFFT010' 'reFFT006' 'reFFT011' 'reFFT017'
 'reFFT013' 'reFFT021' 'reFFT019' 'reFFT016' 'reFFT015' 'reFFT024'
 'reFFT026' 'reFFT018' 'reFFT020' 'reFFT023' 'reFFT028' 'reFFT022'
 'reFFT027' 'rms' 'reFFT030' 'reFFT025' 'reFFT029' 'wavl' 'rng']