In [3]:
from sklearn.datasets import load_iris
import numpy as np
X = np.array([[ 1., -1., 2.],
[ 2., 0., 0.],
[ 0., 1., -1.]])
In [7]:
from sklearn import preprocessing
X_scaled = preprocessing.scale(X)
print(X_scaled)
print(X_scaled.mean(axis=0))
print(X_scaled.std(axis=0))
In [9]:
scaler = preprocessing.StandardScaler().fit(X)
print(scaler)
print(scaler.mean_)
print(scaler.scale_)
print(scaler.transform(X))
scaler.transform([[-1., 1., 0.]])
Out[9]:
In [12]:
X_train = np.array([[ 1., -1., 2.],
[ 2., 0., 0.],
[ 0., 1., -1.]])
min_max_scaler = preprocessing.MinMaxScaler()
X_train_minmax = min_max_scaler.fit_transform(X_train)
print(X_train_minmax)
In [16]:
X_normalized = preprocessing.normalize(X_train, norm='l2')
print(X_normalized)
normalizer = preprocessing.Normalizer().fit(X_train)
normalizer.transform(X_train)
Out[16]:
In [18]:
import numpy as np
from sklearn.preprocessing import PolynomialFeatures
X = np.arange(6).reshape(3, 2)
PolynomialFeatures(2).fit_transform(X)
Out[18]:
In [ ]: