In [10]:
from sklearn.datasets import fetch_mldata
import os
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np

In [4]:
# load data
mnist = fetch_mldata('MNIST original')

In [5]:
mnist


Out[5]:
{'COL_NAMES': ['label', 'data'],
 'DESCR': 'mldata.org dataset: mnist-original',
 'data': array([[0, 0, 0, ..., 0, 0, 0],
        [0, 0, 0, ..., 0, 0, 0],
        [0, 0, 0, ..., 0, 0, 0],
        ...,
        [0, 0, 0, ..., 0, 0, 0],
        [0, 0, 0, ..., 0, 0, 0],
        [0, 0, 0, ..., 0, 0, 0]], dtype=uint8),
 'target': array([0., 0., 0., ..., 9., 9., 9.])}

In [6]:
dir(mnist)


Out[6]:
['COL_NAMES', 'DESCR', 'data', 'target']

In [7]:
X, y = mnist['data'], mnist['target']

In [8]:
print(X.shape)
print(y.shape)


(70000, 784)
(70000,)

In [11]:
# assign a random image
some_digit = X[np.random.randint(0,X.shape[0],1)]

In [12]:



Out[12]:
array([[  0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,
          0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,
          0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,
          0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,
          0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,
          0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,
          0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,
          0,  32, 109, 109, 110, 233, 232, 109,  63,   0,   0,   0,   0,
          0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,
          0,   0,   0,  73, 252, 252, 253, 252, 252, 252, 238, 217, 114,
         73,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,
          0,   0,   0,   0,   0,  73, 252, 252, 253, 252, 252, 252, 253,
        252, 252, 252,  37,   5,   0,   0,   0,   0,   0,   0,   0,   0,
          0,   0,   0,   0,   0,   0,   0,  31, 108, 108, 108, 108, 108,
        190, 170, 252, 252, 252, 253,  35,   1,   0,   0,   0,   0,   0,
          0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,
          0,   0,   0,   0,  42, 159, 252, 253, 252,  71,   0,   0,   0,
          0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,
          0,   0,   0,   0,   0,   0,   0,  26, 221, 253, 252, 206,  31,
          0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,
          0,   0,   0,   0,   0,   0,   0,   0,   0,  27, 221, 253, 252,
        252, 108,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,
          0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,  37, 252,
        253, 252, 252, 108,   0,   0,   0,   0,   0,   0,   0,   0,   0,
          0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,
          0, 145, 255, 253, 253, 108,   0,   0,   0,   0,   0,   0,   0,
          0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,
          0,   0,  32, 237, 253, 252, 252, 108,   0,   0,   0,   0,   0,
          0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,
          0,   0,   0,   0, 140, 252, 253, 252, 226,  31,   0,   0,   0,
          0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,
          0,   0,   0,   0,   0,   0, 181, 252, 253, 252, 132,   0,   0,
          0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,
          0,  63, 110, 109, 109, 109, 110, 150, 253, 253, 255, 222,  41,
          0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,
         32, 115, 217, 237, 253, 252, 252, 252, 253, 252, 252, 252, 253,
        242,  62,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,  32,
         58, 181, 211, 252, 252, 252, 253, 252, 252, 252, 253, 252, 252,
        252, 253, 252,  98,  16,   0,   0,   0,   0,   0,   0,   0,   0,
         63, 237, 252, 252, 252, 252, 252, 252, 253, 252, 252, 252, 253,
        252, 252, 252, 253, 252, 252, 190,   0,   0,   0,   0,   0,   0,
          0,   0, 255, 253, 253, 253, 253, 253, 253, 253, 255, 253, 253,
        253, 255, 253, 175, 207, 255, 253, 253, 253,   0,   0,   0,   0,
          0,   0,   0,   0, 253, 252, 252, 252, 252, 252, 252, 252, 253,
        252, 252, 252, 119,  35,  10,  20,  35, 180, 252, 252,   0,   0,
          0,   0,   0,   0,   0,   0, 149, 252, 252, 252, 252, 252, 252,
        252, 253, 220, 112,  71,   0,   0,   0,   0,   0,  21,  71, 154,
          0,   0,   0,   0,   0,   0,   0,   0,  47, 232, 252, 252, 252,
        252, 148, 108, 108,  15,   0,   0,   0,   0,   0,   0,   0,   0,
          0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,
          0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,
          0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,
          0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,
          0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,
          0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,
          0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,
          0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,
          0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,
          0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,
          0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,
          0,   0,   0,   0]], dtype=uint8)

In [ ]: