In [4]:
import tensorflow as tf
N = 100
matrix1 = tf.random_normal((N,N))
matrix2 = tf.random_normal((N,N))
product = tf.matmul(matrix1, matrix2)
sess = tf.Session()
sess.run(product)
Out[4]:
In [1]:
import tensorflow as tf
from tensorflow.python.client import timeline
N = 100
run_options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE)
run_metadata = tf.RunMetadata()
sess = tf.Session()
matr1 = tf.random_normal((N,N), name = "matrix1")
matr2 = tf.random_normal((N,N),name = "matrix2")
prod = tf.matmul(matr1, matr2,name = "product")
sess.run(prod,options=run_options,run_metadata = run_metadata)
logs_path = 'logs'
#writer = tf.summary.FileWriter(logs_path, graph=tf.get_default_graph())
writer = tf.summary.FileWriter(logdir=logs_path,graph=sess.graph)
time_path = 'logs/timeline.json'
tl = timeline.Timeline(run_metadata.step_stats)
ctf = tl.generate_chrome_trace_format()
with open(time_path, 'w') as f:
f.write(ctf)
writer.add_run_metadata(run_metadata,"mySess")
writer.close()
sess.close()
In [5]:
import tensorflow as tf
constScal = tf.constant(20.0)
varScal = tf.Variable(3.0)
varScal = tf.Variable.assign(varScal,constScal+varScal)
sess = tf.Session()
sess.run(tf.global_variables_initializer())
sess.run(varScal)
Out[5]:
In [1]:
import tensorflow as tf
from tensorflow.python.client import timeline
N = 100
run_options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE)
run_metadata = tf.RunMetadata()
sess = tf.Session()
constScal = tf.constant(20.0, name = 'constant')
varScal = tf.Variable(3.0, name = 'variable')
varScal = tf.Variable.assign(varScal,constScal+varScal)
#varScal = tf.assign(varScal,constScal+varScal)
sess.run(tf.global_variables_initializer())
sess.run(varScal,options=run_options,run_metadata = run_metadata)
logs_path = 'logs'
#writer = tf.summary.FileWriter(logs_path, graph=tf.get_default_graph())
writer = tf.summary.FileWriter(logdir=logs_path,graph=sess.graph)
time_path = 'logs/timeline.json'
tl = timeline.Timeline(run_metadata.step_stats)
ctf = tl.generate_chrome_trace_format()
with open(time_path, 'w') as f:
f.write(ctf)
writer.add_run_metadata(run_metadata,"mySess")
writer.close()
sess.close()
In [8]:
import tensorflow as tf
import numpy
N = 100
matrix = numpy.random.rand(N,N)
placeholder = tf.placeholder(tf.float32)
product = tf.matmul(placeholder, placeholder)
sess = tf.Session()
sess.run(product, feed_dict={placeholder: matrix})
Out[8]:
In [3]:
import tensorflow as tf
import numpy
from tensorflow.python.client import timeline
N = 100
run_options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE)
run_metadata = tf.RunMetadata()
sess = tf.Session()
N = 100
matrix = numpy.random.rand(N,N)
placeholder = tf.placeholder(tf.float32, name = "plchold")
product = tf.matmul(placeholder, placeholder, name = 'product')
sess.run(product, feed_dict={placeholder: matrix},options=run_options,run_metadata = run_metadata)
logs_path = 'logs'
#writer = tf.summary.FileWriter(logs_path, graph=tf.get_default_graph())
writer = tf.summary.FileWriter(logdir=logs_path,graph=sess.graph)
time_path = 'logs/timeline.json'
tl = timeline.Timeline(run_metadata.step_stats)
ctf = tl.generate_chrome_trace_format()
with open(time_path, 'w') as f:
f.write(ctf)
writer.add_run_metadata(run_metadata,"mySess")
writer.close()
sess.close()
In [2]:
import tensorflow as tf
import numpy
from tensorflow.python.client import timeline
run_options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE)
run_metadata = tf.RunMetadata()
enhancement = 10
securbelt = 5000
numColumns = 100
numRows = 20
epoch = -60
frequencies = numpy.random.rand(numColumns)
times = numpy.arange(numColumns) + epoch
weights = numpy.ones(numColumns)
spindowns = numpy.arange(numRows)
numColumns = numColumns + securbelt
freqTF = tf.constant(frequencies, dtype=tf.float32, name= 'freqs')
timesTF = tf.constant(times, dtype=tf.float32, name= 'times')
weightsTF = tf.constant(weights, dtype=tf.float32, name= 'weights')
fdotTF = tf.constant(spindowns, dtype=tf.float32, name= 'sd')
def frequencyHough(frequencies,times, weigths, spindowns):
def rowTransform(ithSD):
sdTimed = tf.multiply(spindowns[ithSD], times, name= 'sdXt')
transform = tf.round(frequencies-sdTimed+securbelt/2, name = 'rounding')
transform = tf.cast(transform, dtype=tf.int32)
values = tf.unsorted_segment_sum(weights, transform, numColumns, name = 'binning')
values = tf.cast(values, dtype=tf.float32)
return values
houghLeft = tf.map_fn(rowTransform, tf.range(0, numRows), dtype=tf.float32, parallel_iterations=8, name= 'leftMap')
houghRight = tf.subtract( houghLeft[:,enhancement:numColumns],houghLeft[:,0:numColumns - enhancement], name='rightMap')
houghDiff = tf.concat([houghLeft[:,0:enhancement],houghRight],1, name='diffMap')
houghMap = tf.cumsum(houghDiff, axis = 1, name='hough')
return houghMap
image = frequencyHough(freqTF,timesTF, weightsTF, fdotTF)
sess = tf.Session()
sess.run(image,options=run_options,run_metadata = run_metadata)
logs_path = 'logs'
#writer = tf.summary.FileWriter(logs_path, graph=tf.get_default_graph())
writer = tf.summary.FileWriter(logdir=logs_path,graph=sess.graph)
time_path = 'logs/timeline.json'
tl = timeline.Timeline(run_metadata.step_stats)
ctf = tl.generate_chrome_trace_format()
with open(time_path, 'w') as f:
f.write(ctf)
writer.add_run_metadata(run_metadata,"mySess")
writer.close()
sess.close()
In [31]:
from matplotlib import pyplot
%matplotlib notebook
pyplot.imshow(alal, aspect = 200)
Out[31]:
In [ ]: