In [ ]:
nb con float 64 in sd*t si ha aumento di 10-20% tempi

In [12]:
import numpy

tempi1 = numpy.load('tempih/tempi1.npy')
tempi9 = numpy.load('tempih/tempi9.npy')
tempiSD = numpy.load('tempih/tempisd.npy')
tempien4 = numpy.load('tempih/tempien4.npy')
tempien8 = numpy.load('tempih/tempien8.npy')

pars1 = numpy.load('tempih/dimspar1.npy')
pars9 = numpy.load('tempih/dimspar9.npy')
parsSD = numpy.load('tempih/dimsparsd.npy')

#print(pars1,pars9)

In [32]:
from matplotlib import pyplot
%matplotlib qt

a = pyplot.scatter(numpy.arange(1,tempi1.size),tempi1[1:],s=6,label= '1 month')

seriale1 = tempi1[1]*numpy.arange(1,tempi1.size)
a = pyplot.plot(numpy.arange(1,tempi1.size),seriale1)

a = pyplot.scatter(numpy.arange(1,20),tempi9[1:20],s = 6,color = 'C3',label='9 months')

seriale9 = tempi9[1]*numpy.arange(1,20)
a = pyplot.plot(numpy.arange(1,20),seriale9,color = 'C3')

pyplot.legend()
pyplot.xlabel('Frequency band (Hz)')
pyplot.ylabel('Computation time (s)')


Out[32]:
<matplotlib.text.Text at 0x7f69c5fe9320>

In [23]:
%matplotlib notebook
guadrel1 = (seriale1-tempi1[1:])/seriale1
guadrel9 = (seriale9-tempi9[1:20])/seriale9

a = pyplot.scatter(numpy.arange(1,tempi1.size),guadrel1)

a = pyplot.scatter(numpy.arange(1,20),guadrel9)

pyplot.show


Out[23]:
<function matplotlib.pyplot.show>

In [40]:
%matplotlib qt
a = pyplot.scatter(numpy.arange(50,501,50),tempiSD,s=20)
serialeSD = tempiSD[0]*numpy.arange(1,11)
a = pyplot.plot(numpy.arange(50,501,50),serialeSD)
#pyplot.legend()
pyplot.xlabel('$N_{\dot{\\nu}}$')
pyplot.ylabel('Computation time (s)')


Warning: Cannot change to a different GUI toolkit: qt. Using notebook instead.
Out[40]:
<matplotlib.text.Text at 0x7f69c5d1f4e0>

In [37]:
from matplotlib import pyplot
%matplotlib qt
a = pyplot.scatter(numpy.arange(1,21),(tempien4[1:]-tempien4[1])/tempien4[1], s=20,label = '$T_{FFT} = 4096$')
a = pyplot.scatter(numpy.arange(1,21),(tempien8[1:]-tempien8[1])/tempien8[1],s=20,label = '$T_{FFT} = 8192$', color = 'C3')
#serialeSD = tempiSD[0]*numpy.arange(1,11)
#a = pyplot.plot(numpy.arange(50,501,50),serialeSD)
pyplot.legend()
pyplot.xlabel('enhancement')
pyplot.ylabel('$\Delta t/t$')


Out[37]:
<matplotlib.text.Text at 0x7f69c5c94f28>

In [ ]: