In [1]:
import tensorflow as tf
import numpy
import scipy.io
#from tensorflow.python.client import timeline
import time
percorsoDati = "/home/protoss/hanford.mat"
struttura = scipy.io.loadmat(percorsoDati)['hanford']
peakmap = struttura[9002].copy()
del struttura
peakmap = peakmap[:,25:80]
from matplotlib import pyplot
%matplotlib notebook
pyplot.figure(figsize=(10, 8))
#a = pyplot.scatter(numpy.arange(tempiUnici.size),tempiUnici/30, s = 0.5)
a = pyplot.imshow(peakmap, origin = 'lower', interpolation = 'none')
In [5]:
import tensorflow as tf
import numpy
import scipy.io
#from tensorflow.python.client import timeline
import time
percorsoDati = "/home/protoss/wn100bkp/dati/datiFederico4.mat"
#index = 9002 #signal
index = 4 #signal meno bello
#index = 5001
#index = 0
struttura1 = scipy.io.loadmat(percorsoDati)['H']
peakmap1 = struttura1[index].copy()
del struttura1
struttura2 = scipy.io.loadmat(percorsoDati)['L']
peakmap2 = struttura2[index].copy()
del struttura2
struttura3 = scipy.io.loadmat(percorsoDati)['V']
peakmap3 = struttura3[index].copy()
del struttura3
peakmapTOT = peakmap1+peakmap2+peakmap3
peakmap = peakmapTOT
filtro = numpy.nonzero(peakmap)
peakmap[filtro] = 1
#scipy.io.savemat
#peakmap = peakmapTOT[:,25:80]
from matplotlib import pyplot
%matplotlib qt
pyplot.figure(figsize=(10, 8))
#a = pyplot.scatter(numpy.arange(tempiUnici.size),tempiUnici/30, s = 0.5)
a = pyplot.imshow(peakmap, cmap = 'binary', origin = 'lower', interpolation = 'none')
In [4]:
#tFft = 4096
tFft = 8192
tObs = 1/5 #mesi
tObs = tObs*30*24*60*60
nPunti = 2
cands = 100
primaFreq = 1/tFft
securbelt = 2000
sparsa = numpy.nonzero(peakmap)
frequenze,tempi = sparsa
tempi = tempi+1
frequenze = frequenze / tFft + 1
pesi = numpy.ones(sparsa[0].size)
scipy.io.savemat("/home/protoss/wn100bkp/dati/peakmap0fed.mat",{"freq":frequenze, "tempi": tempi})
In [3]:
#peakmap = struttura[0]
tFft = 8192
#tFft = 4096
tObs = 1/5 #mesi
tObs = tObs*30*24*60*60
sparsa = numpy.nonzero(peakmap)
frequenze,tempi = sparsa
tempi = tempi+1
frequenze = frequenze / tFft + 1
pesi = numpy.ones(sparsa[0].size)
#headers vari
securbelt = 200000
#frequenze
#frequenze
stepFrequenza = 1/tFft
enhancement = 10
stepFreqRaffinato = stepFrequenza/enhancement
freqMin = numpy.amin(frequenze)
freqMax = numpy.amax(frequenze)
freqIniz = freqMin- stepFrequenza/2 - stepFreqRaffinato
freqFin = freqMax + stepFrequenza/2 + stepFreqRaffinato
nstepFrequenze = numpy.ceil((freqFin-freqIniz)/stepFreqRaffinato)+securbelt
#tempi
#epoca definita come mediana di tempi di tutto il run
#epoca = (57722+57990)/2 #0
epoca =70
#spindowns
spindownMin = -3*1e-8#-16-2*1e-9
spindownMax = +3*1e-8
stepSpindown = stepFrequenza/tObs
nstepSpindown = numpy.round((spindownMax-spindownMin)/stepSpindown).astype(numpy.int32)
#nstepSpindown = 10*2*2*(20)#numpy.round((spindownMax-spindownMin)/stepSpindown).astype(numpy.int32)
print(nstepSpindown)
#stepSpindown = (spindownMax-spindownMin)/nstepSpindown#stepFrequenza/tObs
print(stepSpindown)
# riarrangio gli array in modo che abbia i dati
# nel formato che voglio io
frequenze = frequenze-freqIniz
frequenze = (frequenze/stepFreqRaffinato)-round(enhancement/2+0.001)
tempi = tempi-epoca
tempi = ((tempi)*3600*24/stepFreqRaffinato)
#tempi = numpy.round(tempi/1e8)*1e8
spindowns = numpy.arange(0, nstepSpindown)
spindowns = numpy.multiply(spindowns,stepSpindown)
spindowns = numpy.add(spindowns, spindownMin)
# così ho i tre array delle tre grandezze,
#più i pesi e la fascia di sicurezza
#indice0 = numpy.where(spindowns>0)[0][0]-1
#print(indice0)
#spindowns = spindowns-spindowns[indice0]
In [4]:
def mapnonVar(stepIesimo):
sdTimed = tf.multiply(spindownsTF[stepIesimo], tempiTF, name = "Tdotpert")
#sdTimed = tf.cast(sdTimed, dtype=tf.float32)
appoggio = tf.round(frequenzeTF-sdTimed+securbeltTF/2, name = "appoggioperindici")
appoggio = tf.cast(appoggio, dtype=tf.int64)
valori = tf.unsorted_segment_sum(pesiTF, appoggio, nColumns)
# zeriDopo = tf.zeros([nColumns - tf.size(valori)], dtype=tf.float32)
# riga = tf.concat([valori,zeriDopo],0, name = "rigadihough")
return valori
#ora uso Tensorflow
securbeltTF = tf.constant(securbelt,dtype=tf.float64)
tempiTF = tf.constant(tempi,dtype=tf.float64)
pesiTF = tf.constant(pesi,dtype=tf.float64)
spindownsTF = tf.constant(spindowns, dtype=tf.float64)
frequenzeTF = tf.constant(frequenze, dtype=tf.float64)
nRowsTF = tf.constant(nstepSpindown, dtype=tf.int64)
nColumns = nstepFrequenze
pesiTF = tf.reshape(pesiTF,(1,tf.size(pesi)))
pesiTF = pesiTF[0]
imagenonVar = tf.map_fn(mapnonVar, tf.range(0, nRowsTF), dtype=tf.float64, parallel_iterations=4)
#sessione = tf.Session(config=tf.ConfigProto(log_device_placement=True))
sessione = tf.Session()
#run_options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE)
#run_metadata = tf.RunMetadata()
start = time.time()
#image = sessione.run(imagenonVar, options=run_options, run_metadata=run_metadata)
image = sessione.run(imagenonVar)
stop = time.time()
print(stop-start)
# Create the Timeline object, and write it to a json
#tl = timeline.Timeline(run_metadata.step_stats)
#ctf = tl.generate_chrome_trace_format()
#with open('timelinenonVar.json', 'w') as f:
# f.write(ctf)
nColumns = nColumns.astype(int)
semiLarghezza = numpy.round(enhancement/2+0.001).astype(int)
image[:,semiLarghezza*2:nColumns]=image[:,semiLarghezza*2:nColumns]-image[:,0:nColumns - semiLarghezza*2]
image = numpy.cumsum(image, axis = 1)
print(image.shape)
In [5]:
from matplotlib import pyplot
%matplotlib notebook
pyplot.figure(figsize=(10, 8))
a = pyplot.imshow(image, aspect = 100, interpolation = 'none')
#a = pyplot.imshow(image[94:98], aspect = 10000)
pyplot.colorbar(shrink = 1,aspect = 10)
#a = pyplot.imshow(image[191:192], aspect = 10000)
pyplot.show()
#DA METTER IN LOG
In [71]:
def manchurian_candidates(numCand, freqIniz, image):
minDistance = enhancement*4
candidati = numpy.zeros((9,numCand*2))
primaFreq = freqIniz-(securbelt/2)*stepFreqRaffinato
freqIniziale = 0
freqFinale = (peakmap.shape[0]-1)*stepFrequenza
#QUI ANALOGO FUNZIONE CUT GD2
#%time indexInizialewh = numpy.where(freqniu>freqIniziale)[0][0]
#%time indexFinalewh = numpy.where(freqniu>freqFinale)[0][0]
start = time.time()
indexIniziale = ((freqIniziale-primaFreq)/stepFreqRaffinato).astype(numpy.int64)
indexFinale = ((freqFinale-primaFreq)/stepFreqRaffinato+1).astype(numpy.int64)
imageCand = image[:,indexIniziale:indexFinale]
size = numpy.shape(imageCand)[1]
freqniu = numpy.arange(0,size)*stepFreqRaffinato+freqIniziale
maxPerColumn = numpy.amax(imageCand, axis = 0)
rigaMax = numpy.argmax(imageCand, axis = 0)
#######################
stepFrequenzaNiu = maxPerColumn.size/numCand
indiciFreq = numpy.arange(0,maxPerColumn.size,stepFrequenzaNiu)
indiciFreq = numpy.append(indiciFreq, maxPerColumn.size)
indiciFreq = numpy.round(indiciFreq).astype(numpy.int64)
def statistics(ndArray):
#ndArray = numpy.ravel(ndArray)
mediana = numpy.median(ndArray)
sigmana = numpy.median(numpy.absolute(ndArray-mediana))/0.6745
return mediana, sigmana
stats = statistics(imageCand)
medianaTot = stats[0]
iniziali = numpy.concatenate(([indiciFreq[0]],indiciFreq[0:numCand-2],[indiciFreq[indiciFreq.size-3]]),0)
finali = numpy.concatenate(([indiciFreq[2]-1],indiciFreq[3:numCand+1]-1,[indiciFreq[indiciFreq.size-1]-1]),0)
def statsPerCand(i):
stat = statistics(maxPerColumn[iniziali[i]:finali[i]])#[0]
return stat
statPerCand = numpy.array(list(map(statsPerCand, numpy.arange(numCand))))
medianaPerCand = statPerCand[:,0]
sigmanaPerCand = statPerCand[:,1]
filtro = numpy.where(medianaPerCand > 0)[0]
#medCandFiltrata = medianaPerCand[filtro]
counter = 0
for i in filtro:
inizio = indiciFreq[i]
fine = indiciFreq[i+1]-1
porzioneMaxPerColumn = maxPerColumn[inizio:fine]
localMax = numpy.amax(porzioneMaxPerColumn)
localInd = numpy.argmax(porzioneMaxPerColumn)
if localMax > medianaPerCand[i] and localMax > medianaTot/2:
counter = counter + 1
index = indiciFreq[i] + localInd-1
candidati[0,counter] = freqniu[index]
riga = rigaMax[index]
candidati[3,counter] = spindowns[riga]
candidati[4,counter] = localMax
candidati[5,counter] = (localMax-medianaPerCand[i])/sigmanaPerCand[i]
candidati[8,counter] = 1
candidati[3,:]=numpy.round(candidati[3,:] / stepSpindown) * stepSpindown
return candidati
candidati = manchurian_candidates(256, freqIniz, image)
nonzeri = numpy.nonzero(candidati[0])
finalCand = candidati[:,nonzeri]
In [72]:
from matplotlib import pyplot
%matplotlib notebook
pyplot.figure(figsize=(10, 8))
a = pyplot.imshow(imageCand, aspect = 1000, interpolation = 'none')
#a = pyplot.imshow(image[94:98], aspect = 10000)
pyplot.colorbar(shrink = 1,aspect = 10)
#a = pyplot.imshow(image[191:192], aspect = 10000)
pyplot.show()
In [ ]: