In [5]:
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

In [3]:
class Perceptron(object):
    """Perceptron classifier.
    Parameters
    ------------
    eta : float
        Learning rate (between 0.0 and 1.0)
    n_iter : int
        Passes over the training dataset.
    Attributes
    -----------
    w_ : 1d-array
        Weights after fitting.
    errors_ : list
        Number of misclassifications in every epoch.
    """
    def __init__(self, eta=0.01, n_iter=10):
        self.eta = eta
        self.n_iter = n_iter
    
    def fit(self, X, y):
        """ Fit training data.
        
        Parameters
        ----------
        X : {array-like}, shape = [n_samples, n_features]
            Training vectors, where n_samples
            is the number of samples and n_features is the number of features.
        y : array-like, shape = [n_samples]
            Target values.
        
        Returns
        -------
        self : object

        """
        self.w_ = np.zeros(1 + X.shape[1])
        self.errors_ = []
        
        for _ in range(self.n_iter):
            errors = 0
            for xi, target in zip(X, y):
                update = self.eta * (target - self.predict(xi))
                self.w_[1:] += update * xi
                self.w_[0] += update
                errors += int(update != 0.0)
            self.errors_.append(errors)
        return self
    
    def net_input(self, X):
        """ Calculate net input. """
        return np.dot(X, self.w_[1:]) + self.w_[0]
    
    def predict(self, X):
        """ Return class label after unit step"""
        return np.where(self.net_input(X) >= 0.0, 1, -1)

In [4]:
df = pd.read_csv('https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data', header=None)
df.tail()


Out[4]:
0 1 2 3 4
145 6.7 3.0 5.2 2.3 Iris-virginica
146 6.3 2.5 5.0 1.9 Iris-virginica
147 6.5 3.0 5.2 2.0 Iris-virginica
148 6.2 3.4 5.4 2.3 Iris-virginica
149 5.9 3.0 5.1 1.8 Iris-virginica

In [6]:
y = df.iloc[0:100, 4].values

In [7]:
y = np.where(y == 'Iris-setosa', -1, 1)

In [8]:
X = df.iloc[0:100, [0,2]].values

In [9]:
plt.scatter(X[:50, 0], X[:50,1], color='red', marker='o', label='setosa')
plt.scatter(X[50:100, 0], X[50:100,1], color='blue', marker='x', label='versicolor')
plt.xlabel('sepal length')
plt.ylabel('petal length')
plt.legend(loc='upper left')
plt.show()



In [10]:
ppn = Perceptron(eta=0.1, n_iter=10)
ppn.fit(X, y)
plt.plot(range(1, len(ppn.errors_) + 1), ppn.errors_, marker='o')
plt.xlabel('Epochs')
plt.ylabel('Number misclassications')
plt.show()



In [11]:
from matplotlib.colors import ListedColormap

In [14]:
def plot_decision_regions(X, y, classifier, resolution=0.02):
    #setup marker generator and color map
    markers = ('s','x','o','^','v')
    colors = ('red','blue','lightgreen','gray','cyan')
    cmap = ListedColormap(colors[:len(np.unique(y))])
    
    #plot the decision surface
    x1_min, x1_max = X[:,0].min() - 1, X[:,0].max() + 1
    x2_min, x2_max = X[:,1].min() - 1, X[:,1].max() + 1
    xx1, xx2 = np.meshgrid(np.arange(x1_min, x1_max, resolution),
                          np.arange(x2_min, x2_max, resolution))
    Z = classifier.predict(np.array([xx1.ravel(), xx2.ravel()]).T)
    Z = Z.reshape(xx1.shape)
    plt.contourf(xx1, xx2, Z, alpha=0.4, cmap=cmap)
    plt.xlim(xx1.min(), xx1.max())
    plt.ylim(xx2.min(), xx2.max())
    
    #plot class samples
    for idx, c1 in enumerate(np.unique(y)):
        plt.scatter(x=X[y == c1, 0], y=X[y == c1, 1],
                   alpha = 0.8, c=cmap(idx), marker=markers[idx], label=c1)

In [15]:
plot_decision_regions(X, y, classifier=ppn)
plt.xlabel('sepal length [cm]')
plt.ylabel('petal length [cm]')
plt.legend(loc='upper left')
plt.show()



In [18]:
class AdalineGD(object):
    """ADAptive LInear NEuron classifier Gradient Descent
    
    Parameters
    ------------
    eta : float
        Learning rate (between 0.0 and 1.0)
    n_iter : int
        Passes over the training dataset.
    Attributes
    -----------
    w_ : 1d-array
        Weights after fitting.
    errors_ : list
        Number of misclassifications in every epoch.
    """
    def __init__(self, eta=0.01, n_iter=50):
        self.eta = eta
        self.n_iter = n_iter
    def fit(self, X, y):
        """ Fit training data.
        Parameters
        ----------
        X : {array-like}, shape = [n_samples, n_features]
            Training vectors,
            where n_samples is the number of samples and
            n_features is the number of features.
        y : array-like, shape = [n_samples]
            Target values.
        Returns
        -------
        self : object
    
        """
        self.w_ = np.zeros(1 + X.shape[1])
        self.cost_ =[]
        
        for i in range(self.n_iter):
            output = self.net_input(X)
            errors = (y - output)
            self.w_[1:] += self.eta * X.T.dot(errors)
            self.w_[0] += self.eta * errors.sum()
            cost = (errors**2).sum() / 2.0
            self.cost_.append(cost)
        return self
    
    def net_input(self,X):
        """Calculate net input."""
        return np.dot(X, self.w_[1:]) + self.w_[0]
    
    def activation(self,X):
        """ Compute linear activation """
        return self.net_input(X)
    
    def predict(self, X):
        """Return class label after unit step"""
        return np.where(self.activation(X) >= 0.0, 1, -1)

In [21]:
fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(8,4))
ada1 = AdalineGD(n_iter=10, eta=0.01).fit(X,y)
ax[0].plot(range(1, len(ada1.cost_) + 1), np.log10(ada1.cost_), marker='o')
ax[0].set_xlabel('Epochs')
ax[0].set_ylabel('log(Sum-squared-error)')
ax[0].set_title('Adaline - learning rate 0.01')
ada2 = AdalineGD(n_iter=10, eta = 0.0001).fit(X,y)
ax[1].plot(range(1, len(ada2.cost_)+1), ada2.cost_, marker='o')
ax[1].set_xlabel('Epochs')
ax[1].set_ylabel('Sum-squared-error')
ax[1].set_title('Adaline - learning rate 0.0001')
plt.show()


<matplotlib.figure.Figure at 0x11914c0b8>

In [23]:
X_std = np.copy(X)
X_std[:,0] = (X[:,0] - X[:,0].mean()) / X[:,0].std()
X_std[:,1] = (X[:,1] - X[:,1].mean()) / X[:,1].std()

In [24]:
ada = AdalineGD(n_iter=15, eta=0.01)
ada.fit(X_std, y)
plot_decision_regions(X_std, y, classifier=ada)
plt.title('Adaline - Gradient Descent')
plt.xlabel('sepal length [standardized]')
plt.ylabel('petal length [standardized]')
plt.legend(loc='upper left')
plt.show()
plt.plot(range(1, len(ada.cost_) + 1), ada.cost_, marker='o')
plt.xlabel('Epochs')
plt.ylabel('sum-squared-error')
plt.show()



In [27]:
from numpy.random import seed

class AdalineSGD(object):
    """ADAptive LInear NEuron classifier Stochastic Gradient Descent
    
    Parameters
    ------------
    eta : float
        Learning rate (between 0.0 and 1.0)
    n_iter : int
        Passes over the training dataset.
    Attributes
    -----------
    w_ : 1d-array
        Weights after fitting.
    errors_ : list
        Number of misclassifications in every epoch.
    shuffle : bool (default: True)
        Shuffles training data every epoch
        if True to prevent cycles.
    random_state : int (default: None)
        Set random state for shuffling
        and initializing the weights.
    
    """
    def __init__(self, eta=0.01, n_iter=10, shuffle=True, random_state=None):
        self.eta = eta
        self.n_iter = n_iter
        self.w_initialized = False
        self.shuffle = shuffle
        if random_state:
            seed(random_state)
            
    def fit(self, X, y):
        """ Fit training data.
        Parameters
        ----------
        X : {array-like}, shape = [n_samples, n_features]
            Training vectors,
            where n_samples is the number of samples and
            n_features is the number of features.
        y : array-like, shape = [n_samples]
            Target values.
        
        Returns
        -------
        self : object
    
        """
        self._initialize_weights(X.shape[1])
        self.cost_ =[]
        for i in range(self.n_iter):
            if self.shuffle:
                X, y = self._shuffle(X,y)
            cost = []
            for xi, target in zip(X, y):
                cost.append(self._update_weights(xi, target))
            avg_cost = sum(cost)/len(y)
            self.cost_.append(avg_cost)
        return self
    
    def partial_fit(self, X, y):
        """Fit training data without reinitializing the weights"""
        if not self.w_initialized:
            self._initialize_weights(X.shape[1])
        if y.ravel().shape[0] > 1:
            for xi, target in zip(X, y):
                self._update_weights(xi, target)
        else:
            self._update_weights(X, y)
        return self
    
    def _shuffle(self, X, y):
        """ Shuffle training data"""
        r = np.random.permutation(len(y))
        return X[r], y[r]
    
    def _initialize_weights(self, m):
        """Initialize weights to zeros"""
        self.w_ = np.zeros(1 + m)
        self.w_initialized = True
        
    def _update_weights(self, xi, target):
        """Apply Adaline learning rule to update the weights"""
        output = self.net_input(xi)
        error = (target - output)
        self.w_[1:] += self.eta * xi.dot(error)
        self.w_[0] += self.eta * error
        cost = 0.5 * error**2
        return cost
    
    def net_input(self,X):
        """Calculate net input."""
        return np.dot(X, self.w_[1:]) + self.w_[0]
    
    def activation(self,X):
        """ Compute linear activation """
        return self.net_input(X)
    
    def predict(self, X):
        """Return class label after unit step"""
        return np.where(self.activation(X) >= 0.0, 1, -1)

In [28]:
ada = AdalineSGD(n_iter=15, eta=0.01, random_state=1)
ada.fit(X_std, y)
plot_decision_regions(X_std, y, classifier=ada)
plt.title('Adaline - stochastic gradient descent')
plt.xlabel('sepal length [standardized]')
plt.ylabel('petal length [standardized]')
plt.legend(loc='upper left')
plt.show()
plt.plot(range(1, len(ada.cost_) + 1), ada.cost_, marker='o')
plt.xlabel('Epochs')
plt.ylabel('Average cost')
plt.show()



In [ ]: