In [ ]:
from __future__ import print_function
import os
import numpy as np
import time
np.random.seed(1337)
import theano
import pandas as pd
from keras.preprocessing.text import Tokenizer
from keras.preprocessing.sequence import pad_sequences
from keras.utils.np_utils import to_categorical
from keras.layers import Dense, Flatten, Activation
from keras.layers import Convolution1D, MaxPooling1D, Embedding, LSTM
from keras.models import Model
from keras.layers import Input, Dropout
from keras.optimizers import SGD, Adadelta
from keras.wrappers.scikit_learn import KerasClassifier
from keras.models import Sequential
from sklearn.model_selection import GridSearchCV
import sys
BASE_DIR = '.'
GLOVE_DIR = BASE_DIR + '/glove.twitter.27B/'
TEXT_DATA_DIR = BASE_DIR + '/20_newsgroups/'
MAX_SEQUENCE_LENGTH = 1000
MAX_NB_WORDS = 20000
EMBEDDING_DIM = 25 #25, 50, 100, 200
VALIDATION_SPLIT = 0.2
DENSE_FEATURE = 1024
DROP_OUT = 0.3
# first, build index mapping words in the embeddings set
# to their embedding vector
print('Indexing word vectors.')
print('Embedding Dimesions: %s' % (str(EMBEDDING_DIM)))
embeddings_index = {}
fname = os.path.join(GLOVE_DIR, 'glove.twitter.27B.' + str(EMBEDDING_DIM) + 'd.txt')
f = open(fname)
for line in f:
values = line.split()
word = values[0]
coefs = np.asarray(values[1:], dtype='float32')
embeddings_index[word] = coefs
f.close()
print('Found %s word vectors.' % len(embeddings_index))
# second, prepare text samples and their labels
print('Processing text dataset')
texts = [] # list of text samples
labels_index = {} # dictionary mapping label name to numeric id
labels = [] # list of label ids
for name in sorted(os.listdir(TEXT_DATA_DIR)):
path = os.path.join(TEXT_DATA_DIR, name)
if os.path.isdir(path):
label_id = len(labels_index)
labels_index[name] = label_id
for fname in sorted(os.listdir(path)):
if fname.isdigit():
fpath = os.path.join(path, fname)
if sys.version_info < (3,):
f = open(fpath)
else:
f = open(fpath, encoding='latin-1')
texts.append(f.read())
f.close()
labels.append(label_id)
print('Found %s texts.' % len(texts))
# finally, vectorize the text samples into a 2D integer tensor
tokenizer = Tokenizer(nb_words=MAX_NB_WORDS)
tokenizer.fit_on_texts(texts)
sequences = tokenizer.texts_to_sequences(texts)
word_index = tokenizer.word_index
print('Found %s unique tokens.' % len(word_index))
data = pad_sequences(sequences, maxlen=MAX_SEQUENCE_LENGTH)
labels = to_categorical(np.asarray(labels))
print('Shape of data tensor:', data.shape)
print('Shape of label tensor:', labels.shape)
# split the data into a training set and a validation set
indices = np.arange(data.shape[0])
np.random.shuffle(indices)
data = data[indices]
labels = labels[indices]
nb_validation_samples = int(VALIDATION_SPLIT * data.shape[0])
x_train = data[:-nb_validation_samples]
y_train = labels[:-nb_validation_samples]
x_val = data[-nb_validation_samples:]
y_val = labels[-nb_validation_samples:]
print('Preparing embedding matrix.')
# prepare embedding matrix
nb_words = min(MAX_NB_WORDS, len(word_index))
embedding_matrix = np.zeros((nb_words + 1, EMBEDDING_DIM))
for word, i in word_index.items():
if i > MAX_NB_WORDS:
continue
embedding_vector = embeddings_index.get(word)
if embedding_vector is not None:
# words not found in embedding index will be all-zeros.
embedding_matrix[i] = embedding_vector
# load pre-trained word embeddings into an Embedding layer
# note that we set trainable = False so as to keep the embeddings fixed
# embedding_layer = Embedding(nb_words + 1,
# EMBEDDING_DIM,
# weights=[embedding_matrix],
# input_length=MAX_SEQUENCE_LENGTH,
# trainable=False)
print('Training model.')
Using gpu device 0: GeForce GTX 950 (CNMeM is enabled with initial size: 70.0% of memory, cuDNN 5005)
Using Theano backend.
Indexing word vectors.
Embedding Dimesions: 25
Found 1193514 word vectors.
Processing text dataset
Found 4997 texts.
Found 69408 unique tokens.
Shape of data tensor: (4997, 1000)
Shape of label tensor: (4997, 5)
Preparing embedding matrix.
Training model.
In [ ]:
def create_model(optimizer='sgd', dropout_rate= 0.2):
start = time.time()
model = Sequential()
model.add(Embedding( # Layer 0, Start
input_dim=nb_words + 1, # Size to dictionary, has to be input + 1
output_dim=EMBEDDING_DIM, # Dimensions to generate
weights=[embedding_matrix], # Initialize word weights
input_length=MAX_SEQUENCE_LENGTH,
trainable=False)) # Define length to input sequences in the first layer
model.add(LSTM(128, dropout_W=dropout_rate, dropout_U=dropout_rate)) # try using a GRU instead, for fun
model.add(Dense(5))
model.add(Activation('sigmoid'))
model.compile(loss='categorical_crossentropy',
optimizer=optimizer,
metrics=['accuracy'])
return model
model = KerasClassifier(build_fn=create_model, nb_epoch=25, batch_size=60, verbose=1)
batch_size = [10, 20, 40, 60, 80, 100]
epochs = [10, 50, 100]
optimizers = ['SGD', 'Adam']
dropout_rate = [0.0, 0.1, 0.2, 0.3, 0.4, 0.5]
#learn_rate = [0.001, 0.01, 0.1, 0.2, 0.3]
#activation = ['softmax', 'softplus', 'softsign', 'relu', 'tanh', 'sigmoid', 'hard_sigmoid', 'linear']
param_grid = dict(batch_size=batch_size, nb_epoch=epochs, optimizer=optimizers,
dropout_rate=dropout_rate)
start = time.time()
lstm = GridSearchCV(estimator=model, param_grid=param_grid, cv=4) # Cross Validation for the best hyperparameters
grid_result = lstm.fit(x_train, y_train)
# summarize results
Epoch 1/10
2998/2998 [==============================] - 106s - loss: 1.5931 - acc: 0.2748
Epoch 2/10
2998/2998 [==============================] - 106s - loss: 1.5432 - acc: 0.3212
Epoch 3/10
2998/2998 [==============================] - 107s - loss: 1.5899 - acc: 0.2528
Epoch 4/10
2998/2998 [==============================] - 107s - loss: 1.5586 - acc: 0.3209
Epoch 5/10
2998/2998 [==============================] - 100s - loss: 1.5432 - acc: 0.3019
Epoch 6/10
2998/2998 [==============================] - 101s - loss: 1.4923 - acc: 0.3612
Epoch 7/10
2998/2998 [==============================] - 103s - loss: 1.5042 - acc: 0.3512
Epoch 8/10
2998/2998 [==============================] - 104s - loss: 1.5061 - acc: 0.3456
Epoch 9/10
2998/2998 [==============================] - 104s - loss: 1.5029 - acc: 0.3726
Epoch 10/10
2998/2998 [==============================] - 101s - loss: 1.5118 - acc: 0.3522
1000/1000 [==============================] - 11s
2998/2998 [==============================] - 34s
Epoch 1/10
2998/2998 [==============================] - 101s - loss: 1.5867 - acc: 0.2678
Epoch 2/10
2998/2998 [==============================] - 101s - loss: 1.5436 - acc: 0.3416
Epoch 3/10
2998/2998 [==============================] - 101s - loss: 1.5331 - acc: 0.3279
Epoch 4/10
2998/2998 [==============================] - 101s - loss: 1.5280 - acc: 0.3346
Epoch 5/10
2998/2998 [==============================] - 100s - loss: 1.4652 - acc: 0.3849
Epoch 6/10
2998/2998 [==============================] - 100s - loss: 1.4219 - acc: 0.4006
Epoch 7/10
2998/2998 [==============================] - 100s - loss: 1.5703 - acc: 0.3075
Epoch 8/10
2998/2998 [==============================] - 100s - loss: 1.5506 - acc: 0.3429
Epoch 9/10
2998/2998 [==============================] - 100s - loss: 1.5438 - acc: 0.3386
Epoch 10/10
2998/2998 [==============================] - 100s - loss: 1.4922 - acc: 0.3839
1000/1000 [==============================] - 11s
2998/2998 [==============================] - 33s
Epoch 1/10
2999/2999 [==============================] - 100s - loss: 1.5989 - acc: 0.2461
Epoch 2/10
2999/2999 [==============================] - 100s - loss: 1.5570 - acc: 0.3281
Epoch 3/10
2999/2999 [==============================] - 100s - loss: 1.5047 - acc: 0.3454
Epoch 4/10
2999/2999 [==============================] - 100s - loss: 1.5126 - acc: 0.3581
Epoch 5/10
2999/2999 [==============================] - 100s - loss: 1.4978 - acc: 0.3408
Epoch 6/10
2999/2999 [==============================] - 100s - loss: 1.4887 - acc: 0.3645
Epoch 7/10
2999/2999 [==============================] - 100s - loss: 1.5428 - acc: 0.3124
Epoch 8/10
2999/2999 [==============================] - 100s - loss: 1.5447 - acc: 0.3391
Epoch 9/10
2999/2999 [==============================] - 100s - loss: 1.4588 - acc: 0.4168
Epoch 10/10
2999/2999 [==============================] - 100s - loss: 1.4175 - acc: 0.4061
999/999 [==============================] - 11s
2999/2999 [==============================] - 33s
Epoch 1/10
2999/2999 [==============================] - 100s - loss: 1.5975 - acc: 0.2471
Epoch 2/10
2999/2999 [==============================] - 100s - loss: 1.5607 - acc: 0.3288
Epoch 3/10
2999/2999 [==============================] - 99s - loss: 1.5381 - acc: 0.3511
Epoch 4/10
2999/2999 [==============================] - 99s - loss: 1.5283 - acc: 0.3438
Epoch 5/10
2999/2999 [==============================] - 100s - loss: 1.4902 - acc: 0.3568
Epoch 6/10
2999/2999 [==============================] - 99s - loss: 1.5239 - acc: 0.3231
Epoch 7/10
2999/2999 [==============================] - 99s - loss: 1.4956 - acc: 0.3708
Epoch 8/10
2999/2999 [==============================] - 100s - loss: 1.5116 - acc: 0.3444
Epoch 9/10
2999/2999 [==============================] - 100s - loss: 1.4877 - acc: 0.3748
Epoch 10/10
2999/2999 [==============================] - 99s - loss: 1.4205 - acc: 0.4028
999/999 [==============================] - 11s
2999/2999 [==============================] - 33s
Epoch 1/10
2998/2998 [==============================] - 101s - loss: 1.5396 - acc: 0.3065
Epoch 2/10
2998/2998 [==============================] - 101s - loss: 1.4601 - acc: 0.3813
Epoch 3/10
2998/2998 [==============================] - 102s - loss: 1.3244 - acc: 0.4463
Epoch 4/10
2998/2998 [==============================] - 101s - loss: 0.9814 - acc: 0.6151
Epoch 5/10
2998/2998 [==============================] - 101s - loss: 0.7015 - acc: 0.7428
Epoch 6/10
2998/2998 [==============================] - 101s - loss: 0.3854 - acc: 0.8826
Epoch 7/10
2998/2998 [==============================] - 101s - loss: 0.3214 - acc: 0.9019
Epoch 8/10
2998/2998 [==============================] - 101s - loss: 0.3360 - acc: 0.8849
Epoch 9/10
2998/2998 [==============================] - 101s - loss: 0.1266 - acc: 0.9660
Epoch 10/10
2998/2998 [==============================] - 101s - loss: 0.0749 - acc: 0.9827
1000/1000 [==============================] - 11s
2998/2998 [==============================] - 33s
Epoch 1/10
2998/2998 [==============================] - 107s - loss: 1.4529 - acc: 0.3702
Epoch 2/10
2998/2998 [==============================] - 114s - loss: 1.3684 - acc: 0.4273
Epoch 3/10
2998/2998 [==============================] - 113s - loss: 1.2051 - acc: 0.5020
Epoch 4/10
2998/2998 [==============================] - 113s - loss: 1.1245 - acc: 0.5610
Epoch 5/10
2998/2998 [==============================] - 113s - loss: 0.9353 - acc: 0.6484
Epoch 6/10
2998/2998 [==============================] - 113s - loss: 0.7307 - acc: 0.7492
Epoch 7/10
2998/2998 [==============================] - 113s - loss: 0.5554 - acc: 0.8155
Epoch 8/10
2998/2998 [==============================] - 107s - loss: 0.5380 - acc: 0.8179
Epoch 9/10
2998/2998 [==============================] - 104s - loss: 0.4103 - acc: 0.8652
Epoch 10/10
2998/2998 [==============================] - 104s - loss: 0.3891 - acc: 0.8739
1000/1000 [==============================] - 11s
2998/2998 [==============================] - 33s
Epoch 1/10
2999/2999 [==============================] - 101s - loss: 1.5420 - acc: 0.3251
Epoch 2/10
2999/2999 [==============================] - 101s - loss: 1.3872 - acc: 0.4258
Epoch 3/10
2999/2999 [==============================] - 101s - loss: 1.2864 - acc: 0.4745
Epoch 4/10
2999/2999 [==============================] - 102s - loss: 1.3445 - acc: 0.4568
Epoch 5/10
2999/2999 [==============================] - 102s - loss: 1.1921 - acc: 0.4995
Epoch 6/10
2999/2999 [==============================] - 102s - loss: 1.1930 - acc: 0.5235
Epoch 7/10
2999/2999 [==============================] - 102s - loss: 0.8406 - acc: 0.6872
Epoch 8/10
2999/2999 [==============================] - 102s - loss: 0.6937 - acc: 0.7619
Epoch 9/10
2999/2999 [==============================] - 102s - loss: 0.4395 - acc: 0.8563
Epoch 10/10
2999/2999 [==============================] - 101s - loss: 0.3614 - acc: 0.8783
999/999 [==============================] - 11s
2999/2999 [==============================] - 33s
Epoch 1/10
2999/2999 [==============================] - 101s - loss: 1.4805 - acc: 0.3508
Epoch 2/10
2999/2999 [==============================] - 100s - loss: 1.3544 - acc: 0.4415
Epoch 3/10
2999/2999 [==============================] - 100s - loss: 1.2402 - acc: 0.4892
Epoch 4/10
2999/2999 [==============================] - 101s - loss: 1.2022 - acc: 0.5078
Epoch 5/10
2999/2999 [==============================] - 100s - loss: 0.9583 - acc: 0.6312
Epoch 6/10
2999/2999 [==============================] - 101s - loss: 1.0955 - acc: 0.5602
Epoch 7/10
2999/2999 [==============================] - 100s - loss: 1.2150 - acc: 0.4978
Epoch 8/10
2999/2999 [==============================] - 109s - loss: 0.9674 - acc: 0.6112
Epoch 9/10
2999/2999 [==============================] - 112s - loss: 0.7370 - acc: 0.7319
Epoch 10/10
2999/2999 [==============================] - 117s - loss: 0.7775 - acc: 0.7159
999/999 [==============================] - 13s
2999/2999 [==============================] - 38s
Epoch 1/50
2998/2998 [==============================] - 111s - loss: 1.5922 - acc: 0.2555
Epoch 2/50
2998/2998 [==============================] - 103s - loss: 1.5428 - acc: 0.3342
Epoch 3/50
2998/2998 [==============================] - 103s - loss: 1.5532 - acc: 0.3062
Epoch 4/50
2998/2998 [==============================] - 103s - loss: 1.5726 - acc: 0.2955
Epoch 5/50
2998/2998 [==============================] - 103s - loss: 1.5496 - acc: 0.3262
Epoch 6/50
2998/2998 [==============================] - 103s - loss: 1.5220 - acc: 0.3446
Epoch 7/50
2998/2998 [==============================] - 107s - loss: 1.4874 - acc: 0.3532
Epoch 8/50
2998/2998 [==============================] - 106s - loss: 1.5087 - acc: 0.3429
Epoch 9/50
2998/2998 [==============================] - 106s - loss: 1.4564 - acc: 0.3612
Epoch 10/50
2998/2998 [==============================] - 103s - loss: 1.4800 - acc: 0.3706
Epoch 11/50
2998/2998 [==============================] - 102s - loss: 1.4278 - acc: 0.3869
Epoch 12/50
2998/2998 [==============================] - 102s - loss: 1.4631 - acc: 0.3783
Epoch 13/50
2998/2998 [==============================] - 102s - loss: 1.3871 - acc: 0.4119
Epoch 14/50
2998/2998 [==============================] - 102s - loss: 1.4029 - acc: 0.4073
Epoch 15/50
2998/2998 [==============================] - 105s - loss: 1.3431 - acc: 0.4423
Epoch 16/50
2998/2998 [==============================] - 102s - loss: 1.4586 - acc: 0.3776
Epoch 17/50
2998/2998 [==============================] - 103s - loss: 1.4555 - acc: 0.3889
Epoch 18/50
2998/2998 [==============================] - 103s - loss: 1.4889 - acc: 0.3722
Epoch 19/50
2998/2998 [==============================] - 111s - loss: 1.4674 - acc: 0.3729
Epoch 20/50
2998/2998 [==============================] - 111s - loss: 1.4265 - acc: 0.4156
Epoch 21/50
2998/2998 [==============================] - 111s - loss: 1.3567 - acc: 0.4390
Epoch 22/50
2998/2998 [==============================] - 115s - loss: 1.3723 - acc: 0.4303
Epoch 23/50
2998/2998 [==============================] - 112s - loss: 1.3695 - acc: 0.4353
Epoch 24/50
2998/2998 [==============================] - 114s - loss: 1.2867 - acc: 0.4703
Epoch 25/50
2998/2998 [==============================] - 116s - loss: 1.4809 - acc: 0.3719
Epoch 26/50
2998/2998 [==============================] - 111s - loss: 1.2904 - acc: 0.4680
Epoch 27/50
2998/2998 [==============================] - 110s - loss: 1.1601 - acc: 0.5103
Epoch 28/50
2998/2998 [==============================] - 105s - loss: 1.1922 - acc: 0.5103
Epoch 29/50
2998/2998 [==============================] - 115s - loss: 1.1448 - acc: 0.5127
Epoch 30/50
2998/2998 [==============================] - 115s - loss: 1.1957 - acc: 0.5140
Epoch 31/50
2998/2998 [==============================] - 115s - loss: 1.4422 - acc: 0.4063
Epoch 32/50
2998/2998 [==============================] - 116s - loss: 1.3193 - acc: 0.4556
Epoch 33/50
2998/2998 [==============================] - 117s - loss: 1.3691 - acc: 0.4229
Epoch 34/50
2998/2998 [==============================] - 117s - loss: 1.1374 - acc: 0.5377
Epoch 35/50
2998/2998 [==============================] - 104s - loss: 0.9335 - acc: 0.6237
Epoch 36/50
2998/2998 [==============================] - 103s - loss: 0.8878 - acc: 0.6331
Epoch 37/50
2998/2998 [==============================] - 108s - loss: 0.8840 - acc: 0.6478
Epoch 38/50
2998/2998 [==============================] - 117s - loss: 0.8665 - acc: 0.6434
Epoch 39/50
2998/2998 [==============================] - 116s - loss: 0.7748 - acc: 0.6781
Epoch 40/50
2998/2998 [==============================] - 116s - loss: 1.0192 - acc: 0.5877
Epoch 41/50
2998/2998 [==============================] - 108s - loss: 0.7798 - acc: 0.6871
Epoch 42/50
2998/2998 [==============================] - 109s - loss: 0.6143 - acc: 0.7692
Epoch 43/50
2998/2998 [==============================] - 112s - loss: 0.5968 - acc: 0.7735
Epoch 44/50
2998/2998 [==============================] - 116s - loss: 0.5379 - acc: 0.8032
Epoch 45/50
2998/2998 [==============================] - 115s - loss: 0.4876 - acc: 0.8296
Epoch 46/50
2998/2998 [==============================] - 112s - loss: 0.6259 - acc: 0.7705
Epoch 47/50
2998/2998 [==============================] - 115s - loss: 0.3312 - acc: 0.8879
Epoch 48/50
2998/2998 [==============================] - 115s - loss: 0.3033 - acc: 0.9043
Epoch 49/50
2998/2998 [==============================] - 108s - loss: 0.2776 - acc: 0.9126
Epoch 50/50
2998/2998 [==============================] - 109s - loss: 0.2230 - acc: 0.9346
1000/1000 [==============================] - 12s
2998/2998 [==============================] - 38s
Epoch 1/50
2998/2998 [==============================] - 113s - loss: 1.5917 - acc: 0.2538
Epoch 2/50
2998/2998 [==============================] - 103s - loss: 1.5631 - acc: 0.3149
Epoch 3/50
2998/2998 [==============================] - 101s - loss: 1.5302 - acc: 0.3526
Epoch 4/50
2998/2998 [==============================] - 100s - loss: 1.5246 - acc: 0.3362
Epoch 5/50
2998/2998 [==============================] - 100s - loss: 1.4790 - acc: 0.3496
Epoch 6/50
2998/2998 [==============================] - 100s - loss: 1.3402 - acc: 0.4129
Epoch 7/50
2998/2998 [==============================] - 101s - loss: 1.4004 - acc: 0.3929
Epoch 8/50
2998/2998 [==============================] - 100s - loss: 1.5014 - acc: 0.3502
Epoch 9/50
2998/2998 [==============================] - 100s - loss: 1.5334 - acc: 0.3256
Epoch 10/50
2998/2998 [==============================] - 100s - loss: 1.5426 - acc: 0.3282
Epoch 11/50
2998/2998 [==============================] - 99s - loss: 1.4959 - acc: 0.3716
Epoch 12/50
2998/2998 [==============================] - 100s - loss: 1.4727 - acc: 0.3753
Epoch 13/50
2998/2998 [==============================] - 99s - loss: 1.4571 - acc: 0.3732
Epoch 14/50
2998/2998 [==============================] - 99s - loss: 1.4434 - acc: 0.3849
Epoch 15/50
2998/2998 [==============================] - 99s - loss: 1.4086 - acc: 0.4153
Epoch 16/50
2998/2998 [==============================] - 99s - loss: 1.3906 - acc: 0.4283
Epoch 17/50
2998/2998 [==============================] - 99s - loss: 1.3377 - acc: 0.4500
Epoch 18/50
2998/2998 [==============================] - 99s - loss: 1.2966 - acc: 0.4736
Epoch 19/50
2998/2998 [==============================] - 99s - loss: 1.4248 - acc: 0.4223
Epoch 20/50
2998/2998 [==============================] - 99s - loss: 1.3492 - acc: 0.4573
Epoch 21/50
2998/2998 [==============================] - 99s - loss: 1.2259 - acc: 0.5030
Epoch 22/50
2998/2998 [==============================] - 99s - loss: 1.2288 - acc: 0.5023
Epoch 23/50
2998/2998 [==============================] - 99s - loss: 1.1003 - acc: 0.5751
Epoch 24/50
2998/2998 [==============================] - 99s - loss: 1.0228 - acc: 0.6044
Epoch 25/50
2998/2998 [==============================] - 99s - loss: 1.0911 - acc: 0.5677
Epoch 26/50
2998/2998 [==============================] - 99s - loss: 0.8695 - acc: 0.6828
Epoch 27/50
2998/2998 [==============================] - 99s - loss: 0.7417 - acc: 0.7405
Epoch 28/50
2998/2998 [==============================] - 99s - loss: 1.0027 - acc: 0.5981
Epoch 29/50
2998/2998 [==============================] - 99s - loss: 0.8832 - acc: 0.6498
Epoch 30/50
2998/2998 [==============================] - 99s - loss: 0.8656 - acc: 0.6584
Epoch 31/50
2998/2998 [==============================] - 99s - loss: 0.9826 - acc: 0.5974
Epoch 32/50
2998/2998 [==============================] - 99s - loss: 0.8807 - acc: 0.6534
Epoch 33/50
2998/2998 [==============================] - 99s - loss: 0.9186 - acc: 0.6381
Epoch 34/50
2998/2998 [==============================] - 99s - loss: 0.8397 - acc: 0.6638
Epoch 35/50
2998/2998 [==============================] - 99s - loss: 0.7047 - acc: 0.7395
Epoch 36/50
2998/2998 [==============================] - 99s - loss: 0.6129 - acc: 0.7688
Epoch 37/50
2998/2998 [==============================] - 99s - loss: 0.5008 - acc: 0.8149
Epoch 38/50
2998/2998 [==============================] - 99s - loss: 0.4301 - acc: 0.8496
Epoch 39/50
2998/2998 [==============================] - 99s - loss: 0.3644 - acc: 0.8699
Epoch 40/50
2998/2998 [==============================] - 99s - loss: 0.3781 - acc: 0.8699
Epoch 41/50
2998/2998 [==============================] - 99s - loss: 0.3440 - acc: 0.8836
Epoch 42/50
2998/2998 [==============================] - 99s - loss: 0.3212 - acc: 0.8983
Epoch 43/50
2998/2998 [==============================] - 99s - loss: 0.2780 - acc: 0.9149
Epoch 44/50
2998/2998 [==============================] - 99s - loss: 0.2393 - acc: 0.9276
Epoch 45/50
2998/2998 [==============================] - 99s - loss: 0.3402 - acc: 0.8836
Epoch 46/50
2998/2998 [==============================] - 99s - loss: 0.5155 - acc: 0.8319
Epoch 47/50
2998/2998 [==============================] - 99s - loss: 0.4351 - acc: 0.8722
Epoch 48/50
2998/2998 [==============================] - 99s - loss: 0.3566 - acc: 0.9013
Epoch 49/50
2998/2998 [==============================] - 99s - loss: 0.2183 - acc: 0.9383
Epoch 50/50
2998/2998 [==============================] - 99s - loss: 0.1747 - acc: 0.9500
1000/1000 [==============================] - 10s
2998/2998 [==============================] - 32s
Epoch 1/50
2999/2999 [==============================] - 99s - loss: 1.6020 - acc: 0.2457
Epoch 2/50
2999/2999 [==============================] - 99s - loss: 1.5632 - acc: 0.3141
Epoch 3/50
2999/2999 [==============================] - 99s - loss: 1.5522 - acc: 0.2941
Epoch 4/50
2999/2999 [==============================] - 99s - loss: 1.4649 - acc: 0.3725
Epoch 5/50
2999/2999 [==============================] - 99s - loss: 1.4576 - acc: 0.3611
Epoch 6/50
2999/2999 [==============================] - 99s - loss: 1.5259 - acc: 0.3461
Epoch 7/50
2999/2999 [==============================] - 99s - loss: 1.5404 - acc: 0.3218
Epoch 8/50
2999/2999 [==============================] - 99s - loss: 1.5159 - acc: 0.3478
Epoch 9/50
2999/2999 [==============================] - 99s - loss: 1.5110 - acc: 0.3628
Epoch 10/50
2999/2999 [==============================] - 99s - loss: 1.5349 - acc: 0.3198
Epoch 11/50
2999/2999 [==============================] - 99s - loss: 1.4813 - acc: 0.3665
Epoch 12/50
2999/2999 [==============================] - 99s - loss: 1.4300 - acc: 0.3995
Epoch 13/50
2999/2999 [==============================] - 99s - loss: 1.5231 - acc: 0.3568
Epoch 14/50
2999/2999 [==============================] - 99s - loss: 1.5134 - acc: 0.3538
Epoch 15/50
2999/2999 [==============================] - 99s - loss: 1.4650 - acc: 0.3898
Epoch 16/50
2999/2999 [==============================] - 99s - loss: 1.4200 - acc: 0.4018
Epoch 17/50
2999/2999 [==============================] - 98s - loss: 1.3000 - acc: 0.4522
Epoch 18/50
2999/2999 [==============================] - 99s - loss: 1.4148 - acc: 0.4118
Epoch 19/50
2999/2999 [==============================] - 99s - loss: 1.4537 - acc: 0.3818
Epoch 20/50
2999/2999 [==============================] - 99s - loss: 1.3311 - acc: 0.4448
Epoch 21/50
2999/2999 [==============================] - 99s - loss: 1.2844 - acc: 0.4695
Epoch 22/50
2999/2999 [==============================] - 99s - loss: 1.3769 - acc: 0.4375
Epoch 23/50
2999/2999 [==============================] - 99s - loss: 1.3646 - acc: 0.4371
Epoch 24/50
2999/2999 [==============================] - 99s - loss: 1.3068 - acc: 0.4585
Epoch 25/50
2999/2999 [==============================] - 99s - loss: 1.2760 - acc: 0.4802
Epoch 26/50
2999/2999 [==============================] - 99s - loss: 1.2211 - acc: 0.5058
Epoch 27/50
2999/2999 [==============================] - 99s - loss: 1.1805 - acc: 0.5318
Epoch 28/50
2999/2999 [==============================] - 99s - loss: 0.9632 - acc: 0.6412
Epoch 29/50
2999/2999 [==============================] - 99s - loss: 1.0321 - acc: 0.5942
Epoch 30/50
2999/2999 [==============================] - 99s - loss: 0.9415 - acc: 0.6345
Epoch 31/50
2999/2999 [==============================] - 99s - loss: 0.8210 - acc: 0.7022
Epoch 32/50
2999/2999 [==============================] - 99s - loss: 0.7441 - acc: 0.7346
Epoch 33/50
2999/2999 [==============================] - 99s - loss: 0.8771 - acc: 0.6759
Epoch 34/50
2999/2999 [==============================] - 99s - loss: 0.9168 - acc: 0.6629
Epoch 35/50
2999/2999 [==============================] - 99s - loss: 1.3520 - acc: 0.4388
Epoch 36/50
2999/2999 [==============================] - 99s - loss: 1.1880 - acc: 0.4888
Epoch 37/50
2999/2999 [==============================] - 99s - loss: 1.3236 - acc: 0.4562
Epoch 38/50
2999/2999 [==============================] - 99s - loss: 1.3233 - acc: 0.4415
Epoch 39/50
2999/2999 [==============================] - 99s - loss: 1.1422 - acc: 0.5168
Epoch 40/50
2999/2999 [==============================] - 99s - loss: 1.0584 - acc: 0.5632
Epoch 41/50
2999/2999 [==============================] - 99s - loss: 0.9958 - acc: 0.5855
Epoch 42/50
2999/2999 [==============================] - 99s - loss: 0.9271 - acc: 0.6282
Epoch 43/50
2999/2999 [==============================] - 99s - loss: 0.9342 - acc: 0.6165
Epoch 44/50
2999/2999 [==============================] - 99s - loss: 0.8183 - acc: 0.6699
Epoch 45/50
2999/2999 [==============================] - 99s - loss: 0.8824 - acc: 0.6459
Epoch 46/50
2999/2999 [==============================] - 99s - loss: 1.4099 - acc: 0.3661
Epoch 47/50
2999/2999 [==============================] - 99s - loss: 1.5741 - acc: 0.1974
Epoch 48/50
2999/2999 [==============================] - 99s - loss: 1.5254 - acc: 0.2554
Epoch 49/50
2999/2999 [==============================] - 99s - loss: 1.4222 - acc: 0.3965
Epoch 50/50
2999/2999 [==============================] - 99s - loss: 1.2425 - acc: 0.5005
999/999 [==============================] - 10s
2999/2999 [==============================] - 33s
Epoch 1/50
2999/2999 [==============================] - 99s - loss: 1.5825 - acc: 0.2457
Epoch 2/50
2999/2999 [==============================] - 99s - loss: 1.5531 - acc: 0.3068
Epoch 3/50
2999/2999 [==============================] - 99s - loss: 1.5456 - acc: 0.3018
Epoch 4/50
2999/2999 [==============================] - 99s - loss: 1.4542 - acc: 0.3751
Epoch 5/50
2999/2999 [==============================] - 99s - loss: 1.4876 - acc: 0.3398
Epoch 6/50
2999/2999 [==============================] - 99s - loss: 1.5822 - acc: 0.2881
Epoch 7/50
2999/2999 [==============================] - 99s - loss: 1.5035 - acc: 0.3655
Epoch 8/50
2999/2999 [==============================] - 99s - loss: 1.4476 - acc: 0.3825
Epoch 9/50
2999/2999 [==============================] - 99s - loss: 1.4763 - acc: 0.3558
Epoch 10/50
2999/2999 [==============================] - 99s - loss: 1.4717 - acc: 0.3645
Epoch 11/50
2999/2999 [==============================] - 99s - loss: 1.5207 - acc: 0.3391
Epoch 12/50
2999/2999 [==============================] - 99s - loss: 1.4918 - acc: 0.3491
Epoch 13/50
2999/2999 [==============================] - 99s - loss: 1.5309 - acc: 0.3371
Epoch 14/50
2999/2999 [==============================] - 99s - loss: 1.4499 - acc: 0.3938
Epoch 15/50
2999/2999 [==============================] - 99s - loss: 1.3732 - acc: 0.4115
Epoch 16/50
2999/2999 [==============================] - 99s - loss: 1.3226 - acc: 0.4421
Epoch 17/50
2999/2999 [==============================] - 99s - loss: 1.3029 - acc: 0.4485
Epoch 18/50
2999/2999 [==============================] - 99s - loss: 1.4581 - acc: 0.3841
Epoch 19/50
2999/2999 [==============================] - 99s - loss: 1.4193 - acc: 0.4081
Epoch 20/50
2999/2999 [==============================] - 99s - loss: 1.3808 - acc: 0.4251
Epoch 21/50
2999/2999 [==============================] - 99s - loss: 1.5245 - acc: 0.3438
Epoch 22/50
2999/2999 [==============================] - 99s - loss: 1.4675 - acc: 0.3995
Epoch 23/50
2999/2999 [==============================] - 99s - loss: 1.3007 - acc: 0.4728
Epoch 24/50
2999/2999 [==============================] - 99s - loss: 1.2252 - acc: 0.5025
Epoch 25/50
2999/2999 [==============================] - 99s - loss: 1.2854 - acc: 0.4872
Epoch 26/50
2999/2999 [==============================] - 99s - loss: 1.0844 - acc: 0.5699
Epoch 27/50
2999/2999 [==============================] - 99s - loss: 0.9835 - acc: 0.6109
Epoch 28/50
2999/2999 [==============================] - 99s - loss: 0.9917 - acc: 0.6029
Epoch 29/50
2999/2999 [==============================] - 99s - loss: 0.9532 - acc: 0.6309
Epoch 30/50
2999/2999 [==============================] - 99s - loss: 0.8706 - acc: 0.6659
Epoch 31/50
2999/2999 [==============================] - 99s - loss: 1.2220 - acc: 0.5098
Epoch 32/50
2999/2999 [==============================] - 99s - loss: 1.4252 - acc: 0.4285
Epoch 33/50
2999/2999 [==============================] - 99s - loss: 1.5103 - acc: 0.3558
Epoch 34/50
2999/2999 [==============================] - 99s - loss: 1.4689 - acc: 0.3721
Epoch 35/50
2999/2999 [==============================] - 99s - loss: 1.4823 - acc: 0.3615
Epoch 36/50
2999/2999 [==============================] - 99s - loss: 1.4719 - acc: 0.3748
Epoch 37/50
2999/2999 [==============================] - 99s - loss: 1.4574 - acc: 0.3838
Epoch 38/50
2999/2999 [==============================] - 99s - loss: 1.5016 - acc: 0.3548
Epoch 39/50
2999/2999 [==============================] - 99s - loss: 1.4960 - acc: 0.3585
Epoch 40/50
2999/2999 [==============================] - 99s - loss: 1.4405 - acc: 0.3971
Epoch 41/50
2999/2999 [==============================] - 99s - loss: 1.4578 - acc: 0.3791
Epoch 42/50
2999/2999 [==============================] - 99s - loss: 1.4548 - acc: 0.3841
Epoch 43/50
2999/2999 [==============================] - 99s - loss: 1.4033 - acc: 0.4215
Epoch 44/50
2999/2999 [==============================] - 99s - loss: 1.4089 - acc: 0.4141
Epoch 45/50
2999/2999 [==============================] - 99s - loss: 1.3876 - acc: 0.4105
Epoch 46/50
2999/2999 [==============================] - 99s - loss: 1.3898 - acc: 0.4191
Epoch 47/50
2999/2999 [==============================] - 99s - loss: 1.3299 - acc: 0.4481
Epoch 48/50
2999/2999 [==============================] - 99s - loss: 1.2573 - acc: 0.4968
Epoch 49/50
2999/2999 [==============================] - 99s - loss: 1.1873 - acc: 0.5192
Epoch 50/50
2999/2999 [==============================] - 99s - loss: 1.1045 - acc: 0.5458
999/999 [==============================] - 11s
2999/2999 [==============================] - 33s
Epoch 1/50
2998/2998 [==============================] - 100s - loss: 1.5257 - acc: 0.3219
Epoch 2/50
2998/2998 [==============================] - 100s - loss: 1.4924 - acc: 0.3612
Epoch 3/50
2998/2998 [==============================] - 100s - loss: 1.4193 - acc: 0.3999
Epoch 4/50
2998/2998 [==============================] - 100s - loss: 1.2728 - acc: 0.4713
Epoch 5/50
2998/2998 [==============================] - 100s - loss: 1.1381 - acc: 0.5480
Epoch 6/50
2998/2998 [==============================] - 100s - loss: 1.0021 - acc: 0.6154
Epoch 7/50
2998/2998 [==============================] - 100s - loss: 0.8416 - acc: 0.6845
Epoch 8/50
2998/2998 [==============================] - 100s - loss: 0.8964 - acc: 0.6731
Epoch 9/50
2998/2998 [==============================] - 100s - loss: 0.4787 - acc: 0.8489
Epoch 10/50
2998/2998 [==============================] - 100s - loss: 0.5049 - acc: 0.8376
Epoch 11/50
2998/2998 [==============================] - 100s - loss: 0.3224 - acc: 0.8989
Epoch 12/50
2998/2998 [==============================] - 100s - loss: 0.2092 - acc: 0.9373
Epoch 13/50
2998/2998 [==============================] - 100s - loss: 0.1205 - acc: 0.9676
Epoch 14/50
2998/2998 [==============================] - 100s - loss: 0.1153 - acc: 0.9683
Epoch 15/50
2998/2998 [==============================] - 100s - loss: 0.1453 - acc: 0.9600
Epoch 16/50
2998/2998 [==============================] - 100s - loss: 0.0679 - acc: 0.9820
Epoch 17/50
2998/2998 [==============================] - 100s - loss: 0.0527 - acc: 0.9863
Epoch 18/50
2998/2998 [==============================] - 100s - loss: 0.0534 - acc: 0.9867
Epoch 19/50
2998/2998 [==============================] - 100s - loss: 0.0733 - acc: 0.9777
Epoch 20/50
2998/2998 [==============================] - 100s - loss: 0.0402 - acc: 0.9893
Epoch 21/50
2998/2998 [==============================] - 100s - loss: 0.0278 - acc: 0.9937
Epoch 22/50
2998/2998 [==============================] - 100s - loss: 0.0332 - acc: 0.9917
Epoch 23/50
2998/2998 [==============================] - 100s - loss: 0.0174 - acc: 0.9963
Epoch 24/50
2998/2998 [==============================] - 100s - loss: 0.0217 - acc: 0.9947
Epoch 25/50
2998/2998 [==============================] - 100s - loss: 0.0178 - acc: 0.9967
Epoch 26/50
2998/2998 [==============================] - 100s - loss: 0.0200 - acc: 0.9960
Epoch 27/50
2998/2998 [==============================] - 100s - loss: 0.0320 - acc: 0.9910
Epoch 28/50
2998/2998 [==============================] - 100s - loss: 0.0219 - acc: 0.9933
Epoch 29/50
2998/2998 [==============================] - 100s - loss: 0.0805 - acc: 0.9797
Epoch 30/50
2998/2998 [==============================] - 100s - loss: 0.0221 - acc: 0.9930
Epoch 31/50
2998/2998 [==============================] - 100s - loss: 0.0149 - acc: 0.9953
Epoch 32/50
2998/2998 [==============================] - 100s - loss: 0.0089 - acc: 0.9973
Epoch 33/50
2998/2998 [==============================] - 100s - loss: 0.0098 - acc: 0.9973
Epoch 34/50
2998/2998 [==============================] - 100s - loss: 0.3102 - acc: 0.9053
Epoch 35/50
2998/2998 [==============================] - 100s - loss: 0.0639 - acc: 0.9803
Epoch 36/50
2998/2998 [==============================] - 100s - loss: 0.0209 - acc: 0.9950
Epoch 37/50
2998/2998 [==============================] - 100s - loss: 0.0109 - acc: 0.9983
Epoch 38/50
2998/2998 [==============================] - 100s - loss: 0.0091 - acc: 0.9973
Epoch 39/50
2998/2998 [==============================] - 100s - loss: 0.0101 - acc: 0.9977
Epoch 40/50
2998/2998 [==============================] - 100s - loss: 0.0069 - acc: 0.9980
Epoch 41/50
2998/2998 [==============================] - 100s - loss: 0.0057 - acc: 0.9987
Epoch 42/50
2998/2998 [==============================] - 100s - loss: 0.0082 - acc: 0.9980
Epoch 43/50
2998/2998 [==============================] - 100s - loss: 0.0358 - acc: 0.9903
Epoch 44/50
2998/2998 [==============================] - 100s - loss: 0.0123 - acc: 0.9963
Epoch 45/50
2998/2998 [==============================] - 100s - loss: 0.0053 - acc: 0.9990
Epoch 46/50
2998/2998 [==============================] - 100s - loss: 0.0043 - acc: 0.9990
Epoch 47/50
2998/2998 [==============================] - 100s - loss: 0.0042 - acc: 0.9990
Epoch 48/50
2998/2998 [==============================] - 100s - loss: 0.0048 - acc: 0.9983
Epoch 49/50
2998/2998 [==============================] - 100s - loss: 0.0041 - acc: 0.9987
Epoch 50/50
2998/2998 [==============================] - 100s - loss: 0.0034 - acc: 0.9990
1000/1000 [==============================] - 10s
2998/2998 [==============================] - 33s
Epoch 1/50
2998/2998 [==============================] - 100s - loss: 1.4700 - acc: 0.3492
Epoch 2/50
2998/2998 [==============================] - 100s - loss: 1.2462 - acc: 0.4757
Epoch 3/50
2998/2998 [==============================] - 100s - loss: 1.2239 - acc: 0.4953
Epoch 4/50
2998/2998 [==============================] - 100s - loss: 1.1341 - acc: 0.5394
Epoch 5/50
2998/2998 [==============================] - 100s - loss: 1.3247 - acc: 0.4546
Epoch 6/50
2998/2998 [==============================] - 100s - loss: 1.4113 - acc: 0.4163
Epoch 7/50
2998/2998 [==============================] - 100s - loss: 1.0514 - acc: 0.5931
Epoch 8/50
2998/2998 [==============================] - 100s - loss: 0.8487 - acc: 0.6741
Epoch 9/50
2998/2998 [==============================] - 100s - loss: 0.5836 - acc: 0.7915
Epoch 10/50
2998/2998 [==============================] - 100s - loss: 0.4540 - acc: 0.8429
Epoch 11/50
2998/2998 [==============================] - 100s - loss: 0.2389 - acc: 0.9290
Epoch 12/50
2998/2998 [==============================] - 100s - loss: 0.1813 - acc: 0.9510
Epoch 13/50
2998/2998 [==============================] - 100s - loss: 0.1288 - acc: 0.9696
Epoch 14/50
2998/2998 [==============================] - 100s - loss: 0.1257 - acc: 0.9610
Epoch 15/50
2998/2998 [==============================] - 100s - loss: 0.1099 - acc: 0.9706
Epoch 16/50
2998/2998 [==============================] - 100s - loss: 0.0430 - acc: 0.9903
Epoch 17/50
2998/2998 [==============================] - 100s - loss: 0.0350 - acc: 0.9930
Epoch 18/50
2998/2998 [==============================] - 100s - loss: 0.0833 - acc: 0.9773
Epoch 19/50
2998/2998 [==============================] - 100s - loss: 0.0422 - acc: 0.9900
Epoch 20/50
2998/2998 [==============================] - 100s - loss: 0.0244 - acc: 0.9950
Epoch 21/50
2998/2998 [==============================] - 100s - loss: 0.0282 - acc: 0.9930
Epoch 22/50
2998/2998 [==============================] - 100s - loss: 0.0410 - acc: 0.9897
Epoch 23/50
2998/2998 [==============================] - 100s - loss: 0.0284 - acc: 0.9920
Epoch 24/50
2998/2998 [==============================] - 100s - loss: 0.0183 - acc: 0.9950
Epoch 25/50
2998/2998 [==============================] - 100s - loss: 0.0228 - acc: 0.9937
Epoch 26/50
2998/2998 [==============================] - 100s - loss: 0.0091 - acc: 0.9983
Epoch 27/50
2998/2998 [==============================] - 100s - loss: 0.0108 - acc: 0.9973
Epoch 28/50
2998/2998 [==============================] - 100s - loss: 0.0189 - acc: 0.9950
Epoch 29/50
2998/2998 [==============================] - 100s - loss: 0.0137 - acc: 0.9967
Epoch 30/50
2998/2998 [==============================] - 100s - loss: 0.0089 - acc: 0.9973
Epoch 31/50
2998/2998 [==============================] - 100s - loss: 0.0088 - acc: 0.9970
Epoch 32/50
2998/2998 [==============================] - 100s - loss: 0.0039 - acc: 0.9983
Epoch 33/50
2998/2998 [==============================] - 100s - loss: 0.0021 - acc: 0.9993
Epoch 34/50
2998/2998 [==============================] - 100s - loss: 0.0035 - acc: 0.9990
Epoch 35/50
2998/2998 [==============================] - 100s - loss: 0.0018 - acc: 0.9990
Epoch 36/50
2998/2998 [==============================] - 100s - loss: 0.0157 - acc: 0.9963
Epoch 37/50
2998/2998 [==============================] - 100s - loss: 0.0275 - acc: 0.9917
Epoch 38/50
2998/2998 [==============================] - 100s - loss: 0.0065 - acc: 0.9977
Epoch 39/50
2998/2998 [==============================] - 100s - loss: 0.0037 - acc: 0.9987
Epoch 40/50
2998/2998 [==============================] - 100s - loss: 0.0026 - acc: 0.9990
Epoch 41/50
2998/2998 [==============================] - 100s - loss: 0.0037 - acc: 0.9990
Epoch 42/50
2998/2998 [==============================] - 100s - loss: 0.0046 - acc: 0.9987
Epoch 43/50
2998/2998 [==============================] - 100s - loss: 0.0255 - acc: 0.9917
Epoch 44/50
2998/2998 [==============================] - 100s - loss: 0.0169 - acc: 0.9950
Epoch 45/50
2998/2998 [==============================] - 100s - loss: 0.0080 - acc: 0.9980
Epoch 46/50
2998/2998 [==============================] - 100s - loss: 0.0045 - acc: 0.9987
Epoch 47/50
2998/2998 [==============================] - 100s - loss: 0.0032 - acc: 0.9987
Epoch 48/50
2998/2998 [==============================] - 100s - loss: 0.0020 - acc: 0.9993
Epoch 49/50
2998/2998 [==============================] - 100s - loss: 0.0023 - acc: 0.9993
Epoch 50/50
2998/2998 [==============================] - 102s - loss: 0.0020 - acc: 0.9993
1000/1000 [==============================] - 12s
2998/2998 [==============================] - 35s
Epoch 1/50
2999/2999 [==============================] - 104s - loss: 1.4501 - acc: 0.3671
Epoch 2/50
2999/2999 [==============================] - 104s - loss: 1.4285 - acc: 0.3901
Epoch 3/50
2999/2999 [==============================] - 104s - loss: 1.3477 - acc: 0.4328
Epoch 4/50
2999/2999 [==============================] - 104s - loss: 1.2225 - acc: 0.4962
Epoch 5/50
2999/2999 [==============================] - 104s - loss: 1.1185 - acc: 0.5398
Epoch 6/50
2999/2999 [==============================] - 105s - loss: 1.1851 - acc: 0.5205
Epoch 7/50
2999/2999 [==============================] - 101s - loss: 1.0060 - acc: 0.6005
Epoch 8/50
2999/2999 [==============================] - 102s - loss: 1.1241 - acc: 0.5265
Epoch 9/50
2999/2999 [==============================] - 101s - loss: 1.0696 - acc: 0.5702
Epoch 10/50
2999/2999 [==============================] - 101s - loss: 0.8838 - acc: 0.6586
Epoch 11/50
2999/2999 [==============================] - 101s - loss: 0.7770 - acc: 0.7119
Epoch 12/50
2999/2999 [==============================] - 101s - loss: 0.6361 - acc: 0.7663
Epoch 13/50
2999/2999 [==============================] - 102s - loss: 0.4142 - acc: 0.8646
Epoch 14/50
2999/2999 [==============================] - 101s - loss: 0.2972 - acc: 0.9006
Epoch 15/50
2999/2999 [==============================] - 101s - loss: 0.3545 - acc: 0.8870
Epoch 16/50
2999/2999 [==============================] - 100s - loss: 0.1930 - acc: 0.9403
Epoch 17/50
2999/2999 [==============================] - 100s - loss: 0.0875 - acc: 0.9773
Epoch 18/50
2999/2999 [==============================] - 104s - loss: 0.0963 - acc: 0.9710
Epoch 19/50
2999/2999 [==============================] - 113s - loss: 0.0949 - acc: 0.9767
Epoch 20/50
2999/2999 [==============================] - 112s - loss: 0.0650 - acc: 0.9850
Epoch 21/50
2999/2999 [==============================] - 113s - loss: 0.0375 - acc: 0.9923
Epoch 22/50
2999/2999 [==============================] - 112s - loss: 0.0299 - acc: 0.9933
Epoch 23/50
2999/2999 [==============================] - 112s - loss: 0.0418 - acc: 0.9907
Epoch 24/50
2999/2999 [==============================] - 109s - loss: 0.0295 - acc: 0.9917
Epoch 25/50
2999/2999 [==============================] - 103s - loss: 0.0688 - acc: 0.9803
Epoch 26/50
2999/2999 [==============================] - 103s - loss: 0.0841 - acc: 0.9797
Epoch 27/50
2999/2999 [==============================] - 103s - loss: 0.0398 - acc: 0.9900
Epoch 28/50
2999/2999 [==============================] - 103s - loss: 0.0208 - acc: 0.9960
Epoch 29/50
2999/2999 [==============================] - 103s - loss: 0.0155 - acc: 0.9967
Epoch 30/50
2999/2999 [==============================] - 103s - loss: 0.0163 - acc: 0.9940
Epoch 31/50
2999/2999 [==============================] - 103s - loss: 0.0265 - acc: 0.9923
Epoch 32/50
2999/2999 [==============================] - 103s - loss: 0.0131 - acc: 0.9963
Epoch 33/50
2999/2999 [==============================] - 103s - loss: 0.0209 - acc: 0.9953
Epoch 34/50
2999/2999 [==============================] - 103s - loss: 0.0118 - acc: 0.9960
Epoch 35/50
2999/2999 [==============================] - 104s - loss: 0.0061 - acc: 0.9983
Epoch 36/50
2999/2999 [==============================] - 104s - loss: 0.0254 - acc: 0.9933
Epoch 37/50
2999/2999 [==============================] - 103s - loss: 0.0131 - acc: 0.9953
Epoch 38/50
1460/2999 [=============>................] - ETA: 53s - loss: 0.0198 - acc: 0.9945
In [ ]:
print("Best: %f using %s" % (grid_result.best_score_, grid_result.best_params_))
print ("Fitting Time : ", time.time() - start)
print("Done compiling.")
In [ ]:
In [ ]:
Content source: irisliu0616/Short-text-Classification
Similar notebooks: