In [ ]:
from __future__ import print_function
import os
import numpy as np
import time
np.random.seed(1337)

import theano
import pandas as pd
from keras.preprocessing.text import Tokenizer
from keras.preprocessing.sequence import pad_sequences
from keras.utils.np_utils import to_categorical
from keras.layers import Dense, Flatten, Activation
from keras.layers import Convolution1D, MaxPooling1D, Embedding, LSTM
from keras.models import Model
from keras.layers import Input, Dropout
from keras.optimizers import SGD, Adadelta
from keras.wrappers.scikit_learn import KerasClassifier
from keras.models import Sequential
from sklearn.model_selection import GridSearchCV
import sys

BASE_DIR = '.'
GLOVE_DIR = BASE_DIR + '/glove.twitter.27B/'

TEXT_DATA_DIR = BASE_DIR + '/20_newsgroups/'

MAX_SEQUENCE_LENGTH = 1000
MAX_NB_WORDS = 20000
EMBEDDING_DIM = 25  #25, 50, 100, 200
VALIDATION_SPLIT = 0.2
DENSE_FEATURE = 1024
DROP_OUT = 0.3

# first, build index mapping words in the embeddings set
# to their embedding vector

print('Indexing word vectors.')
print('Embedding Dimesions: %s' % (str(EMBEDDING_DIM)))

embeddings_index = {}
fname = os.path.join(GLOVE_DIR, 'glove.twitter.27B.' + str(EMBEDDING_DIM) + 'd.txt')
f = open(fname)
for line in f:
    values = line.split()
    word = values[0]
    coefs = np.asarray(values[1:], dtype='float32')
    embeddings_index[word] = coefs
f.close()

print('Found %s word vectors.' % len(embeddings_index))

# second, prepare text samples and their labels
print('Processing text dataset')

texts = []  # list of text samples
labels_index = {}  # dictionary mapping label name to numeric id
labels = []  # list of label ids
for name in sorted(os.listdir(TEXT_DATA_DIR)):
    path = os.path.join(TEXT_DATA_DIR, name)
    if os.path.isdir(path):
        label_id = len(labels_index)
        labels_index[name] = label_id
        for fname in sorted(os.listdir(path)):
            if fname.isdigit():
                fpath = os.path.join(path, fname)
                if sys.version_info < (3,):
                    f = open(fpath)
                else:
                    f = open(fpath, encoding='latin-1')
                texts.append(f.read())
                f.close()
                labels.append(label_id)

print('Found %s texts.' % len(texts))

# finally, vectorize the text samples into a 2D integer tensor
tokenizer = Tokenizer(nb_words=MAX_NB_WORDS)
tokenizer.fit_on_texts(texts)
sequences = tokenizer.texts_to_sequences(texts)

word_index = tokenizer.word_index
print('Found %s unique tokens.' % len(word_index))

data = pad_sequences(sequences, maxlen=MAX_SEQUENCE_LENGTH)

labels = to_categorical(np.asarray(labels))
print('Shape of data tensor:', data.shape)
print('Shape of label tensor:', labels.shape)

# split the data into a training set and a validation set
indices = np.arange(data.shape[0])
np.random.shuffle(indices)
data = data[indices]
labels = labels[indices]
nb_validation_samples = int(VALIDATION_SPLIT * data.shape[0])

x_train = data[:-nb_validation_samples]
y_train = labels[:-nb_validation_samples]
x_val = data[-nb_validation_samples:]
y_val = labels[-nb_validation_samples:]

print('Preparing embedding matrix.')

# prepare embedding matrix
nb_words = min(MAX_NB_WORDS, len(word_index))
embedding_matrix = np.zeros((nb_words + 1, EMBEDDING_DIM))
for word, i in word_index.items():
    if i > MAX_NB_WORDS:
        continue
    embedding_vector = embeddings_index.get(word)
    if embedding_vector is not None:
        # words not found in embedding index will be all-zeros.
        embedding_matrix[i] = embedding_vector

# load pre-trained word embeddings into an Embedding layer
# note that we set trainable = False so as to keep the embeddings fixed
# embedding_layer = Embedding(nb_words + 1,
#                             EMBEDDING_DIM,
#                             weights=[embedding_matrix],
#                             input_length=MAX_SEQUENCE_LENGTH,
#                             trainable=False)

print('Training model.')


Using gpu device 0: GeForce GTX 950 (CNMeM is enabled with initial size: 70.0% of memory, cuDNN 5005)
Using Theano backend.
Indexing word vectors.
Embedding Dimesions: 25
Found 1193514 word vectors.
Processing text dataset
Found 4997 texts.
Found 69408 unique tokens.
Shape of data tensor: (4997, 1000)
Shape of label tensor: (4997, 5)
Preparing embedding matrix.
Training model.

In [ ]:
def create_model(optimizer='sgd', dropout_rate= 0.2):
    start = time.time()
    model = Sequential()
    
    model.add(Embedding(                          # Layer 0, Start
        input_dim=nb_words + 1,                   # Size to dictionary, has to be input + 1
        output_dim=EMBEDDING_DIM,                 # Dimensions to generate
        weights=[embedding_matrix],               # Initialize word weights
        input_length=MAX_SEQUENCE_LENGTH, 
        trainable=False))        # Define length to input sequences in the first layer
    
    model.add(LSTM(128, dropout_W=dropout_rate, dropout_U=dropout_rate))  # try using a GRU instead, for fun
    model.add(Dense(5))
    model.add(Activation('sigmoid'))
    model.compile(loss='categorical_crossentropy',
                  optimizer=optimizer,
                  metrics=['accuracy'])
    
    return model

model = KerasClassifier(build_fn=create_model, nb_epoch=25, batch_size=60, verbose=1)

batch_size = [10, 20, 40, 60, 80, 100]
epochs = [10, 50, 100]
optimizers = ['SGD', 'Adam']
dropout_rate = [0.0, 0.1, 0.2, 0.3, 0.4, 0.5]
#learn_rate = [0.001, 0.01, 0.1, 0.2, 0.3]
#activation = ['softmax', 'softplus', 'softsign', 'relu', 'tanh', 'sigmoid', 'hard_sigmoid', 'linear']

param_grid = dict(batch_size=batch_size, nb_epoch=epochs, optimizer=optimizers, 
                  dropout_rate=dropout_rate)

start = time.time()

lstm = GridSearchCV(estimator=model, param_grid=param_grid, cv=4) # Cross Validation for the best hyperparameters

grid_result = lstm.fit(x_train, y_train)

# summarize results


Epoch 1/10
2998/2998 [==============================] - 106s - loss: 1.5931 - acc: 0.2748     
Epoch 2/10
2998/2998 [==============================] - 106s - loss: 1.5432 - acc: 0.3212     
Epoch 3/10
2998/2998 [==============================] - 107s - loss: 1.5899 - acc: 0.2528     
Epoch 4/10
2998/2998 [==============================] - 107s - loss: 1.5586 - acc: 0.3209     
Epoch 5/10
2998/2998 [==============================] - 100s - loss: 1.5432 - acc: 0.3019        
Epoch 6/10
2998/2998 [==============================] - 101s - loss: 1.4923 - acc: 0.3612     
Epoch 7/10
2998/2998 [==============================] - 103s - loss: 1.5042 - acc: 0.3512     
Epoch 8/10
2998/2998 [==============================] - 104s - loss: 1.5061 - acc: 0.3456     
Epoch 9/10
2998/2998 [==============================] - 104s - loss: 1.5029 - acc: 0.3726     
Epoch 10/10
2998/2998 [==============================] - 101s - loss: 1.5118 - acc: 0.3522     
1000/1000 [==============================] - 11s     
2998/2998 [==============================] - 34s     
Epoch 1/10
2998/2998 [==============================] - 101s - loss: 1.5867 - acc: 0.2678     
Epoch 2/10
2998/2998 [==============================] - 101s - loss: 1.5436 - acc: 0.3416     
Epoch 3/10
2998/2998 [==============================] - 101s - loss: 1.5331 - acc: 0.3279     
Epoch 4/10
2998/2998 [==============================] - 101s - loss: 1.5280 - acc: 0.3346     
Epoch 5/10
2998/2998 [==============================] - 100s - loss: 1.4652 - acc: 0.3849     
Epoch 6/10
2998/2998 [==============================] - 100s - loss: 1.4219 - acc: 0.4006     
Epoch 7/10
2998/2998 [==============================] - 100s - loss: 1.5703 - acc: 0.3075     
Epoch 8/10
2998/2998 [==============================] - 100s - loss: 1.5506 - acc: 0.3429     
Epoch 9/10
2998/2998 [==============================] - 100s - loss: 1.5438 - acc: 0.3386     
Epoch 10/10
2998/2998 [==============================] - 100s - loss: 1.4922 - acc: 0.3839     
1000/1000 [==============================] - 11s     
2998/2998 [==============================] - 33s     
Epoch 1/10
2999/2999 [==============================] - 100s - loss: 1.5989 - acc: 0.2461     
Epoch 2/10
2999/2999 [==============================] - 100s - loss: 1.5570 - acc: 0.3281     
Epoch 3/10
2999/2999 [==============================] - 100s - loss: 1.5047 - acc: 0.3454     
Epoch 4/10
2999/2999 [==============================] - 100s - loss: 1.5126 - acc: 0.3581     
Epoch 5/10
2999/2999 [==============================] - 100s - loss: 1.4978 - acc: 0.3408     
Epoch 6/10
2999/2999 [==============================] - 100s - loss: 1.4887 - acc: 0.3645     
Epoch 7/10
2999/2999 [==============================] - 100s - loss: 1.5428 - acc: 0.3124     
Epoch 8/10
2999/2999 [==============================] - 100s - loss: 1.5447 - acc: 0.3391     
Epoch 9/10
2999/2999 [==============================] - 100s - loss: 1.4588 - acc: 0.4168     
Epoch 10/10
2999/2999 [==============================] - 100s - loss: 1.4175 - acc: 0.4061     
999/999 [==============================] - 11s     
2999/2999 [==============================] - 33s     
Epoch 1/10
2999/2999 [==============================] - 100s - loss: 1.5975 - acc: 0.2471     
Epoch 2/10
2999/2999 [==============================] - 100s - loss: 1.5607 - acc: 0.3288     
Epoch 3/10
2999/2999 [==============================] - 99s - loss: 1.5381 - acc: 0.3511      
Epoch 4/10
2999/2999 [==============================] - 99s - loss: 1.5283 - acc: 0.3438      
Epoch 5/10
2999/2999 [==============================] - 100s - loss: 1.4902 - acc: 0.3568     
Epoch 6/10
2999/2999 [==============================] - 99s - loss: 1.5239 - acc: 0.3231      
Epoch 7/10
2999/2999 [==============================] - 99s - loss: 1.4956 - acc: 0.3708      
Epoch 8/10
2999/2999 [==============================] - 100s - loss: 1.5116 - acc: 0.3444     
Epoch 9/10
2999/2999 [==============================] - 100s - loss: 1.4877 - acc: 0.3748     
Epoch 10/10
2999/2999 [==============================] - 99s - loss: 1.4205 - acc: 0.4028      
999/999 [==============================] - 11s     
2999/2999 [==============================] - 33s     
Epoch 1/10
2998/2998 [==============================] - 101s - loss: 1.5396 - acc: 0.3065     
Epoch 2/10
2998/2998 [==============================] - 101s - loss: 1.4601 - acc: 0.3813     
Epoch 3/10
2998/2998 [==============================] - 102s - loss: 1.3244 - acc: 0.4463     
Epoch 4/10
2998/2998 [==============================] - 101s - loss: 0.9814 - acc: 0.6151     
Epoch 5/10
2998/2998 [==============================] - 101s - loss: 0.7015 - acc: 0.7428     
Epoch 6/10
2998/2998 [==============================] - 101s - loss: 0.3854 - acc: 0.8826     
Epoch 7/10
2998/2998 [==============================] - 101s - loss: 0.3214 - acc: 0.9019     
Epoch 8/10
2998/2998 [==============================] - 101s - loss: 0.3360 - acc: 0.8849     
Epoch 9/10
2998/2998 [==============================] - 101s - loss: 0.1266 - acc: 0.9660     
Epoch 10/10
2998/2998 [==============================] - 101s - loss: 0.0749 - acc: 0.9827     
1000/1000 [==============================] - 11s     
2998/2998 [==============================] - 33s     
Epoch 1/10
2998/2998 [==============================] - 107s - loss: 1.4529 - acc: 0.3702     
Epoch 2/10
2998/2998 [==============================] - 114s - loss: 1.3684 - acc: 0.4273     
Epoch 3/10
2998/2998 [==============================] - 113s - loss: 1.2051 - acc: 0.5020     
Epoch 4/10
2998/2998 [==============================] - 113s - loss: 1.1245 - acc: 0.5610     
Epoch 5/10
2998/2998 [==============================] - 113s - loss: 0.9353 - acc: 0.6484     
Epoch 6/10
2998/2998 [==============================] - 113s - loss: 0.7307 - acc: 0.7492     
Epoch 7/10
2998/2998 [==============================] - 113s - loss: 0.5554 - acc: 0.8155     
Epoch 8/10
2998/2998 [==============================] - 107s - loss: 0.5380 - acc: 0.8179     
Epoch 9/10
2998/2998 [==============================] - 104s - loss: 0.4103 - acc: 0.8652     
Epoch 10/10
2998/2998 [==============================] - 104s - loss: 0.3891 - acc: 0.8739     
1000/1000 [==============================] - 11s     
2998/2998 [==============================] - 33s     
Epoch 1/10
2999/2999 [==============================] - 101s - loss: 1.5420 - acc: 0.3251     
Epoch 2/10
2999/2999 [==============================] - 101s - loss: 1.3872 - acc: 0.4258     
Epoch 3/10
2999/2999 [==============================] - 101s - loss: 1.2864 - acc: 0.4745     
Epoch 4/10
2999/2999 [==============================] - 102s - loss: 1.3445 - acc: 0.4568     
Epoch 5/10
2999/2999 [==============================] - 102s - loss: 1.1921 - acc: 0.4995     
Epoch 6/10
2999/2999 [==============================] - 102s - loss: 1.1930 - acc: 0.5235     
Epoch 7/10
2999/2999 [==============================] - 102s - loss: 0.8406 - acc: 0.6872     
Epoch 8/10
2999/2999 [==============================] - 102s - loss: 0.6937 - acc: 0.7619     
Epoch 9/10
2999/2999 [==============================] - 102s - loss: 0.4395 - acc: 0.8563     
Epoch 10/10
2999/2999 [==============================] - 101s - loss: 0.3614 - acc: 0.8783     
999/999 [==============================] - 11s     
2999/2999 [==============================] - 33s     
Epoch 1/10
2999/2999 [==============================] - 101s - loss: 1.4805 - acc: 0.3508     
Epoch 2/10
2999/2999 [==============================] - 100s - loss: 1.3544 - acc: 0.4415    
Epoch 3/10
2999/2999 [==============================] - 100s - loss: 1.2402 - acc: 0.4892     
Epoch 4/10
2999/2999 [==============================] - 101s - loss: 1.2022 - acc: 0.5078     
Epoch 5/10
2999/2999 [==============================] - 100s - loss: 0.9583 - acc: 0.6312     
Epoch 6/10
2999/2999 [==============================] - 101s - loss: 1.0955 - acc: 0.5602     
Epoch 7/10
2999/2999 [==============================] - 100s - loss: 1.2150 - acc: 0.4978     
Epoch 8/10
2999/2999 [==============================] - 109s - loss: 0.9674 - acc: 0.6112     
Epoch 9/10
2999/2999 [==============================] - 112s - loss: 0.7370 - acc: 0.7319     
Epoch 10/10
2999/2999 [==============================] - 117s - loss: 0.7775 - acc: 0.7159     
999/999 [==============================] - 13s     
2999/2999 [==============================] - 38s     
Epoch 1/50
2998/2998 [==============================] - 111s - loss: 1.5922 - acc: 0.2555     
Epoch 2/50
2998/2998 [==============================] - 103s - loss: 1.5428 - acc: 0.3342     
Epoch 3/50
2998/2998 [==============================] - 103s - loss: 1.5532 - acc: 0.3062     
Epoch 4/50
2998/2998 [==============================] - 103s - loss: 1.5726 - acc: 0.2955     
Epoch 5/50
2998/2998 [==============================] - 103s - loss: 1.5496 - acc: 0.3262     
Epoch 6/50
2998/2998 [==============================] - 103s - loss: 1.5220 - acc: 0.3446     
Epoch 7/50
2998/2998 [==============================] - 107s - loss: 1.4874 - acc: 0.3532     
Epoch 8/50
2998/2998 [==============================] - 106s - loss: 1.5087 - acc: 0.3429     
Epoch 9/50
2998/2998 [==============================] - 106s - loss: 1.4564 - acc: 0.3612         
Epoch 10/50
2998/2998 [==============================] - 103s - loss: 1.4800 - acc: 0.3706     
Epoch 11/50
2998/2998 [==============================] - 102s - loss: 1.4278 - acc: 0.3869     
Epoch 12/50
2998/2998 [==============================] - 102s - loss: 1.4631 - acc: 0.3783     
Epoch 13/50
2998/2998 [==============================] - 102s - loss: 1.3871 - acc: 0.4119     
Epoch 14/50
2998/2998 [==============================] - 102s - loss: 1.4029 - acc: 0.4073     
Epoch 15/50
2998/2998 [==============================] - 105s - loss: 1.3431 - acc: 0.4423     
Epoch 16/50
2998/2998 [==============================] - 102s - loss: 1.4586 - acc: 0.3776     
Epoch 17/50
2998/2998 [==============================] - 103s - loss: 1.4555 - acc: 0.3889     
Epoch 18/50
2998/2998 [==============================] - 103s - loss: 1.4889 - acc: 0.3722         
Epoch 19/50
2998/2998 [==============================] - 111s - loss: 1.4674 - acc: 0.3729     
Epoch 20/50
2998/2998 [==============================] - 111s - loss: 1.4265 - acc: 0.4156     
Epoch 21/50
2998/2998 [==============================] - 111s - loss: 1.3567 - acc: 0.4390     
Epoch 22/50
2998/2998 [==============================] - 115s - loss: 1.3723 - acc: 0.4303     
Epoch 23/50
2998/2998 [==============================] - 112s - loss: 1.3695 - acc: 0.4353     
Epoch 24/50
2998/2998 [==============================] - 114s - loss: 1.2867 - acc: 0.4703     
Epoch 25/50
2998/2998 [==============================] - 116s - loss: 1.4809 - acc: 0.3719     
Epoch 26/50
2998/2998 [==============================] - 111s - loss: 1.2904 - acc: 0.4680     
Epoch 27/50
2998/2998 [==============================] - 110s - loss: 1.1601 - acc: 0.5103     
Epoch 28/50
2998/2998 [==============================] - 105s - loss: 1.1922 - acc: 0.5103     
Epoch 29/50
2998/2998 [==============================] - 115s - loss: 1.1448 - acc: 0.5127     
Epoch 30/50
2998/2998 [==============================] - 115s - loss: 1.1957 - acc: 0.5140     
Epoch 31/50
2998/2998 [==============================] - 115s - loss: 1.4422 - acc: 0.4063     
Epoch 32/50
2998/2998 [==============================] - 116s - loss: 1.3193 - acc: 0.4556     
Epoch 33/50
2998/2998 [==============================] - 117s - loss: 1.3691 - acc: 0.4229     
Epoch 34/50
2998/2998 [==============================] - 117s - loss: 1.1374 - acc: 0.5377     
Epoch 35/50
2998/2998 [==============================] - 104s - loss: 0.9335 - acc: 0.6237     
Epoch 36/50
2998/2998 [==============================] - 103s - loss: 0.8878 - acc: 0.6331     
Epoch 37/50
2998/2998 [==============================] - 108s - loss: 0.8840 - acc: 0.6478     
Epoch 38/50
2998/2998 [==============================] - 117s - loss: 0.8665 - acc: 0.6434     
Epoch 39/50
2998/2998 [==============================] - 116s - loss: 0.7748 - acc: 0.6781     
Epoch 40/50
2998/2998 [==============================] - 116s - loss: 1.0192 - acc: 0.5877     
Epoch 41/50
2998/2998 [==============================] - 108s - loss: 0.7798 - acc: 0.6871     
Epoch 42/50
2998/2998 [==============================] - 109s - loss: 0.6143 - acc: 0.7692     
Epoch 43/50
2998/2998 [==============================] - 112s - loss: 0.5968 - acc: 0.7735     
Epoch 44/50
2998/2998 [==============================] - 116s - loss: 0.5379 - acc: 0.8032     
Epoch 45/50
2998/2998 [==============================] - 115s - loss: 0.4876 - acc: 0.8296     
Epoch 46/50
2998/2998 [==============================] - 112s - loss: 0.6259 - acc: 0.7705     
Epoch 47/50
2998/2998 [==============================] - 115s - loss: 0.3312 - acc: 0.8879     
Epoch 48/50
2998/2998 [==============================] - 115s - loss: 0.3033 - acc: 0.9043     
Epoch 49/50
2998/2998 [==============================] - 108s - loss: 0.2776 - acc: 0.9126     
Epoch 50/50
2998/2998 [==============================] - 109s - loss: 0.2230 - acc: 0.9346     
1000/1000 [==============================] - 12s     
2998/2998 [==============================] - 38s     
Epoch 1/50
2998/2998 [==============================] - 113s - loss: 1.5917 - acc: 0.2538     
Epoch 2/50
2998/2998 [==============================] - 103s - loss: 1.5631 - acc: 0.3149         
Epoch 3/50
2998/2998 [==============================] - 101s - loss: 1.5302 - acc: 0.3526     
Epoch 4/50
2998/2998 [==============================] - 100s - loss: 1.5246 - acc: 0.3362    
Epoch 5/50
2998/2998 [==============================] - 100s - loss: 1.4790 - acc: 0.3496    
Epoch 6/50
2998/2998 [==============================] - 100s - loss: 1.3402 - acc: 0.4129     
Epoch 7/50
2998/2998 [==============================] - 101s - loss: 1.4004 - acc: 0.3929    
Epoch 8/50
2998/2998 [==============================] - 100s - loss: 1.5014 - acc: 0.3502     
Epoch 9/50
2998/2998 [==============================] - 100s - loss: 1.5334 - acc: 0.3256     
Epoch 10/50
2998/2998 [==============================] - 100s - loss: 1.5426 - acc: 0.3282    
Epoch 11/50
2998/2998 [==============================] - 99s - loss: 1.4959 - acc: 0.3716     
Epoch 12/50
2998/2998 [==============================] - 100s - loss: 1.4727 - acc: 0.3753    
Epoch 13/50
2998/2998 [==============================] - 99s - loss: 1.4571 - acc: 0.3732     
Epoch 14/50
2998/2998 [==============================] - 99s - loss: 1.4434 - acc: 0.3849     
Epoch 15/50
2998/2998 [==============================] - 99s - loss: 1.4086 - acc: 0.4153     
Epoch 16/50
2998/2998 [==============================] - 99s - loss: 1.3906 - acc: 0.4283     
Epoch 17/50
2998/2998 [==============================] - 99s - loss: 1.3377 - acc: 0.4500     
Epoch 18/50
2998/2998 [==============================] - 99s - loss: 1.2966 - acc: 0.4736     
Epoch 19/50
2998/2998 [==============================] - 99s - loss: 1.4248 - acc: 0.4223     
Epoch 20/50
2998/2998 [==============================] - 99s - loss: 1.3492 - acc: 0.4573     
Epoch 21/50
2998/2998 [==============================] - 99s - loss: 1.2259 - acc: 0.5030     
Epoch 22/50
2998/2998 [==============================] - 99s - loss: 1.2288 - acc: 0.5023     
Epoch 23/50
2998/2998 [==============================] - 99s - loss: 1.1003 - acc: 0.5751     
Epoch 24/50
2998/2998 [==============================] - 99s - loss: 1.0228 - acc: 0.6044     
Epoch 25/50
2998/2998 [==============================] - 99s - loss: 1.0911 - acc: 0.5677     
Epoch 26/50
2998/2998 [==============================] - 99s - loss: 0.8695 - acc: 0.6828     
Epoch 27/50
2998/2998 [==============================] - 99s - loss: 0.7417 - acc: 0.7405     
Epoch 28/50
2998/2998 [==============================] - 99s - loss: 1.0027 - acc: 0.5981     
Epoch 29/50
2998/2998 [==============================] - 99s - loss: 0.8832 - acc: 0.6498     
Epoch 30/50
2998/2998 [==============================] - 99s - loss: 0.8656 - acc: 0.6584     
Epoch 31/50
2998/2998 [==============================] - 99s - loss: 0.9826 - acc: 0.5974     
Epoch 32/50
2998/2998 [==============================] - 99s - loss: 0.8807 - acc: 0.6534     
Epoch 33/50
2998/2998 [==============================] - 99s - loss: 0.9186 - acc: 0.6381     
Epoch 34/50
2998/2998 [==============================] - 99s - loss: 0.8397 - acc: 0.6638     
Epoch 35/50
2998/2998 [==============================] - 99s - loss: 0.7047 - acc: 0.7395     
Epoch 36/50
2998/2998 [==============================] - 99s - loss: 0.6129 - acc: 0.7688     
Epoch 37/50
2998/2998 [==============================] - 99s - loss: 0.5008 - acc: 0.8149     
Epoch 38/50
2998/2998 [==============================] - 99s - loss: 0.4301 - acc: 0.8496     
Epoch 39/50
2998/2998 [==============================] - 99s - loss: 0.3644 - acc: 0.8699     
Epoch 40/50
2998/2998 [==============================] - 99s - loss: 0.3781 - acc: 0.8699     
Epoch 41/50
2998/2998 [==============================] - 99s - loss: 0.3440 - acc: 0.8836     
Epoch 42/50
2998/2998 [==============================] - 99s - loss: 0.3212 - acc: 0.8983     
Epoch 43/50
2998/2998 [==============================] - 99s - loss: 0.2780 - acc: 0.9149     
Epoch 44/50
2998/2998 [==============================] - 99s - loss: 0.2393 - acc: 0.9276     
Epoch 45/50
2998/2998 [==============================] - 99s - loss: 0.3402 - acc: 0.8836     
Epoch 46/50
2998/2998 [==============================] - 99s - loss: 0.5155 - acc: 0.8319     
Epoch 47/50
2998/2998 [==============================] - 99s - loss: 0.4351 - acc: 0.8722     
Epoch 48/50
2998/2998 [==============================] - 99s - loss: 0.3566 - acc: 0.9013     
Epoch 49/50
2998/2998 [==============================] - 99s - loss: 0.2183 - acc: 0.9383     
Epoch 50/50
2998/2998 [==============================] - 99s - loss: 0.1747 - acc: 0.9500     
1000/1000 [==============================] - 10s     
2998/2998 [==============================] - 32s     
Epoch 1/50
2999/2999 [==============================] - 99s - loss: 1.6020 - acc: 0.2457      
Epoch 2/50
2999/2999 [==============================] - 99s - loss: 1.5632 - acc: 0.3141     
Epoch 3/50
2999/2999 [==============================] - 99s - loss: 1.5522 - acc: 0.2941     
Epoch 4/50
2999/2999 [==============================] - 99s - loss: 1.4649 - acc: 0.3725     
Epoch 5/50
2999/2999 [==============================] - 99s - loss: 1.4576 - acc: 0.3611     
Epoch 6/50
2999/2999 [==============================] - 99s - loss: 1.5259 - acc: 0.3461     
Epoch 7/50
2999/2999 [==============================] - 99s - loss: 1.5404 - acc: 0.3218     
Epoch 8/50
2999/2999 [==============================] - 99s - loss: 1.5159 - acc: 0.3478     
Epoch 9/50
2999/2999 [==============================] - 99s - loss: 1.5110 - acc: 0.3628     
Epoch 10/50
2999/2999 [==============================] - 99s - loss: 1.5349 - acc: 0.3198     
Epoch 11/50
2999/2999 [==============================] - 99s - loss: 1.4813 - acc: 0.3665     
Epoch 12/50
2999/2999 [==============================] - 99s - loss: 1.4300 - acc: 0.3995     
Epoch 13/50
2999/2999 [==============================] - 99s - loss: 1.5231 - acc: 0.3568     
Epoch 14/50
2999/2999 [==============================] - 99s - loss: 1.5134 - acc: 0.3538     
Epoch 15/50
2999/2999 [==============================] - 99s - loss: 1.4650 - acc: 0.3898     
Epoch 16/50
2999/2999 [==============================] - 99s - loss: 1.4200 - acc: 0.4018     
Epoch 17/50
2999/2999 [==============================] - 98s - loss: 1.3000 - acc: 0.4522     
Epoch 18/50
2999/2999 [==============================] - 99s - loss: 1.4148 - acc: 0.4118     
Epoch 19/50
2999/2999 [==============================] - 99s - loss: 1.4537 - acc: 0.3818     
Epoch 20/50
2999/2999 [==============================] - 99s - loss: 1.3311 - acc: 0.4448     
Epoch 21/50
2999/2999 [==============================] - 99s - loss: 1.2844 - acc: 0.4695     
Epoch 22/50
2999/2999 [==============================] - 99s - loss: 1.3769 - acc: 0.4375     
Epoch 23/50
2999/2999 [==============================] - 99s - loss: 1.3646 - acc: 0.4371     
Epoch 24/50
2999/2999 [==============================] - 99s - loss: 1.3068 - acc: 0.4585      
Epoch 25/50
2999/2999 [==============================] - 99s - loss: 1.2760 - acc: 0.4802     
Epoch 26/50
2999/2999 [==============================] - 99s - loss: 1.2211 - acc: 0.5058     
Epoch 27/50
2999/2999 [==============================] - 99s - loss: 1.1805 - acc: 0.5318     
Epoch 28/50
2999/2999 [==============================] - 99s - loss: 0.9632 - acc: 0.6412     
Epoch 29/50
2999/2999 [==============================] - 99s - loss: 1.0321 - acc: 0.5942     
Epoch 30/50
2999/2999 [==============================] - 99s - loss: 0.9415 - acc: 0.6345     
Epoch 31/50
2999/2999 [==============================] - 99s - loss: 0.8210 - acc: 0.7022     
Epoch 32/50
2999/2999 [==============================] - 99s - loss: 0.7441 - acc: 0.7346     
Epoch 33/50
2999/2999 [==============================] - 99s - loss: 0.8771 - acc: 0.6759     
Epoch 34/50
2999/2999 [==============================] - 99s - loss: 0.9168 - acc: 0.6629     
Epoch 35/50
2999/2999 [==============================] - 99s - loss: 1.3520 - acc: 0.4388     
Epoch 36/50
2999/2999 [==============================] - 99s - loss: 1.1880 - acc: 0.4888     
Epoch 37/50
2999/2999 [==============================] - 99s - loss: 1.3236 - acc: 0.4562     
Epoch 38/50
2999/2999 [==============================] - 99s - loss: 1.3233 - acc: 0.4415     
Epoch 39/50
2999/2999 [==============================] - 99s - loss: 1.1422 - acc: 0.5168     
Epoch 40/50
2999/2999 [==============================] - 99s - loss: 1.0584 - acc: 0.5632     
Epoch 41/50
2999/2999 [==============================] - 99s - loss: 0.9958 - acc: 0.5855     
Epoch 42/50
2999/2999 [==============================] - 99s - loss: 0.9271 - acc: 0.6282     
Epoch 43/50
2999/2999 [==============================] - 99s - loss: 0.9342 - acc: 0.6165     
Epoch 44/50
2999/2999 [==============================] - 99s - loss: 0.8183 - acc: 0.6699     
Epoch 45/50
2999/2999 [==============================] - 99s - loss: 0.8824 - acc: 0.6459     
Epoch 46/50
2999/2999 [==============================] - 99s - loss: 1.4099 - acc: 0.3661     
Epoch 47/50
2999/2999 [==============================] - 99s - loss: 1.5741 - acc: 0.1974     
Epoch 48/50
2999/2999 [==============================] - 99s - loss: 1.5254 - acc: 0.2554     
Epoch 49/50
2999/2999 [==============================] - 99s - loss: 1.4222 - acc: 0.3965     
Epoch 50/50
2999/2999 [==============================] - 99s - loss: 1.2425 - acc: 0.5005     
999/999 [==============================] - 10s     
2999/2999 [==============================] - 33s     
Epoch 1/50
2999/2999 [==============================] - 99s - loss: 1.5825 - acc: 0.2457      
Epoch 2/50
2999/2999 [==============================] - 99s - loss: 1.5531 - acc: 0.3068     
Epoch 3/50
2999/2999 [==============================] - 99s - loss: 1.5456 - acc: 0.3018     
Epoch 4/50
2999/2999 [==============================] - 99s - loss: 1.4542 - acc: 0.3751     
Epoch 5/50
2999/2999 [==============================] - 99s - loss: 1.4876 - acc: 0.3398     
Epoch 6/50
2999/2999 [==============================] - 99s - loss: 1.5822 - acc: 0.2881     
Epoch 7/50
2999/2999 [==============================] - 99s - loss: 1.5035 - acc: 0.3655     
Epoch 8/50
2999/2999 [==============================] - 99s - loss: 1.4476 - acc: 0.3825     
Epoch 9/50
2999/2999 [==============================] - 99s - loss: 1.4763 - acc: 0.3558     
Epoch 10/50
2999/2999 [==============================] - 99s - loss: 1.4717 - acc: 0.3645      
Epoch 11/50
2999/2999 [==============================] - 99s - loss: 1.5207 - acc: 0.3391     
Epoch 12/50
2999/2999 [==============================] - 99s - loss: 1.4918 - acc: 0.3491     
Epoch 13/50
2999/2999 [==============================] - 99s - loss: 1.5309 - acc: 0.3371     
Epoch 14/50
2999/2999 [==============================] - 99s - loss: 1.4499 - acc: 0.3938     
Epoch 15/50
2999/2999 [==============================] - 99s - loss: 1.3732 - acc: 0.4115     
Epoch 16/50
2999/2999 [==============================] - 99s - loss: 1.3226 - acc: 0.4421     
Epoch 17/50
2999/2999 [==============================] - 99s - loss: 1.3029 - acc: 0.4485     
Epoch 18/50
2999/2999 [==============================] - 99s - loss: 1.4581 - acc: 0.3841     
Epoch 19/50
2999/2999 [==============================] - 99s - loss: 1.4193 - acc: 0.4081     
Epoch 20/50
2999/2999 [==============================] - 99s - loss: 1.3808 - acc: 0.4251     
Epoch 21/50
2999/2999 [==============================] - 99s - loss: 1.5245 - acc: 0.3438     
Epoch 22/50
2999/2999 [==============================] - 99s - loss: 1.4675 - acc: 0.3995     
Epoch 23/50
2999/2999 [==============================] - 99s - loss: 1.3007 - acc: 0.4728     
Epoch 24/50
2999/2999 [==============================] - 99s - loss: 1.2252 - acc: 0.5025     
Epoch 25/50
2999/2999 [==============================] - 99s - loss: 1.2854 - acc: 0.4872     
Epoch 26/50
2999/2999 [==============================] - 99s - loss: 1.0844 - acc: 0.5699     
Epoch 27/50
2999/2999 [==============================] - 99s - loss: 0.9835 - acc: 0.6109     
Epoch 28/50
2999/2999 [==============================] - 99s - loss: 0.9917 - acc: 0.6029     
Epoch 29/50
2999/2999 [==============================] - 99s - loss: 0.9532 - acc: 0.6309     
Epoch 30/50
2999/2999 [==============================] - 99s - loss: 0.8706 - acc: 0.6659     
Epoch 31/50
2999/2999 [==============================] - 99s - loss: 1.2220 - acc: 0.5098     
Epoch 32/50
2999/2999 [==============================] - 99s - loss: 1.4252 - acc: 0.4285     
Epoch 33/50
2999/2999 [==============================] - 99s - loss: 1.5103 - acc: 0.3558     
Epoch 34/50
2999/2999 [==============================] - 99s - loss: 1.4689 - acc: 0.3721     
Epoch 35/50
2999/2999 [==============================] - 99s - loss: 1.4823 - acc: 0.3615     
Epoch 36/50
2999/2999 [==============================] - 99s - loss: 1.4719 - acc: 0.3748     
Epoch 37/50
2999/2999 [==============================] - 99s - loss: 1.4574 - acc: 0.3838     
Epoch 38/50
2999/2999 [==============================] - 99s - loss: 1.5016 - acc: 0.3548     
Epoch 39/50
2999/2999 [==============================] - 99s - loss: 1.4960 - acc: 0.3585     
Epoch 40/50
2999/2999 [==============================] - 99s - loss: 1.4405 - acc: 0.3971     
Epoch 41/50
2999/2999 [==============================] - 99s - loss: 1.4578 - acc: 0.3791     
Epoch 42/50
2999/2999 [==============================] - 99s - loss: 1.4548 - acc: 0.3841     
Epoch 43/50
2999/2999 [==============================] - 99s - loss: 1.4033 - acc: 0.4215     
Epoch 44/50
2999/2999 [==============================] - 99s - loss: 1.4089 - acc: 0.4141     
Epoch 45/50
2999/2999 [==============================] - 99s - loss: 1.3876 - acc: 0.4105      
Epoch 46/50
2999/2999 [==============================] - 99s - loss: 1.3898 - acc: 0.4191     
Epoch 47/50
2999/2999 [==============================] - 99s - loss: 1.3299 - acc: 0.4481     
Epoch 48/50
2999/2999 [==============================] - 99s - loss: 1.2573 - acc: 0.4968     
Epoch 49/50
2999/2999 [==============================] - 99s - loss: 1.1873 - acc: 0.5192     
Epoch 50/50
2999/2999 [==============================] - 99s - loss: 1.1045 - acc: 0.5458     
999/999 [==============================] - 11s     
2999/2999 [==============================] - 33s     
Epoch 1/50
2998/2998 [==============================] - 100s - loss: 1.5257 - acc: 0.3219     
Epoch 2/50
2998/2998 [==============================] - 100s - loss: 1.4924 - acc: 0.3612    
Epoch 3/50
2998/2998 [==============================] - 100s - loss: 1.4193 - acc: 0.3999    
Epoch 4/50
2998/2998 [==============================] - 100s - loss: 1.2728 - acc: 0.4713    
Epoch 5/50
2998/2998 [==============================] - 100s - loss: 1.1381 - acc: 0.5480    
Epoch 6/50
2998/2998 [==============================] - 100s - loss: 1.0021 - acc: 0.6154     
Epoch 7/50
2998/2998 [==============================] - 100s - loss: 0.8416 - acc: 0.6845    
Epoch 8/50
2998/2998 [==============================] - 100s - loss: 0.8964 - acc: 0.6731    
Epoch 9/50
2998/2998 [==============================] - 100s - loss: 0.4787 - acc: 0.8489    
Epoch 10/50
2998/2998 [==============================] - 100s - loss: 0.5049 - acc: 0.8376     
Epoch 11/50
2998/2998 [==============================] - 100s - loss: 0.3224 - acc: 0.8989    
Epoch 12/50
2998/2998 [==============================] - 100s - loss: 0.2092 - acc: 0.9373    
Epoch 13/50
2998/2998 [==============================] - 100s - loss: 0.1205 - acc: 0.9676    
Epoch 14/50
2998/2998 [==============================] - 100s - loss: 0.1153 - acc: 0.9683     
Epoch 15/50
2998/2998 [==============================] - 100s - loss: 0.1453 - acc: 0.9600    
Epoch 16/50
2998/2998 [==============================] - 100s - loss: 0.0679 - acc: 0.9820    
Epoch 17/50
2998/2998 [==============================] - 100s - loss: 0.0527 - acc: 0.9863    
Epoch 18/50
2998/2998 [==============================] - 100s - loss: 0.0534 - acc: 0.9867    
Epoch 19/50
2998/2998 [==============================] - 100s - loss: 0.0733 - acc: 0.9777    
Epoch 20/50
2998/2998 [==============================] - 100s - loss: 0.0402 - acc: 0.9893    
Epoch 21/50
2998/2998 [==============================] - 100s - loss: 0.0278 - acc: 0.9937    
Epoch 22/50
2998/2998 [==============================] - 100s - loss: 0.0332 - acc: 0.9917    
Epoch 23/50
2998/2998 [==============================] - 100s - loss: 0.0174 - acc: 0.9963    
Epoch 24/50
2998/2998 [==============================] - 100s - loss: 0.0217 - acc: 0.9947     
Epoch 25/50
2998/2998 [==============================] - 100s - loss: 0.0178 - acc: 0.9967    
Epoch 26/50
2998/2998 [==============================] - 100s - loss: 0.0200 - acc: 0.9960    
Epoch 27/50
2998/2998 [==============================] - 100s - loss: 0.0320 - acc: 0.9910     
Epoch 28/50
2998/2998 [==============================] - 100s - loss: 0.0219 - acc: 0.9933    
Epoch 29/50
2998/2998 [==============================] - 100s - loss: 0.0805 - acc: 0.9797     
Epoch 30/50
2998/2998 [==============================] - 100s - loss: 0.0221 - acc: 0.9930    
Epoch 31/50
2998/2998 [==============================] - 100s - loss: 0.0149 - acc: 0.9953    
Epoch 32/50
2998/2998 [==============================] - 100s - loss: 0.0089 - acc: 0.9973    
Epoch 33/50
2998/2998 [==============================] - 100s - loss: 0.0098 - acc: 0.9973    
Epoch 34/50
2998/2998 [==============================] - 100s - loss: 0.3102 - acc: 0.9053    
Epoch 35/50
2998/2998 [==============================] - 100s - loss: 0.0639 - acc: 0.9803    
Epoch 36/50
2998/2998 [==============================] - 100s - loss: 0.0209 - acc: 0.9950    
Epoch 37/50
2998/2998 [==============================] - 100s - loss: 0.0109 - acc: 0.9983    
Epoch 38/50
2998/2998 [==============================] - 100s - loss: 0.0091 - acc: 0.9973     
Epoch 39/50
2998/2998 [==============================] - 100s - loss: 0.0101 - acc: 0.9977    
Epoch 40/50
2998/2998 [==============================] - 100s - loss: 0.0069 - acc: 0.9980     
Epoch 41/50
2998/2998 [==============================] - 100s - loss: 0.0057 - acc: 0.9987    
Epoch 42/50
2998/2998 [==============================] - 100s - loss: 0.0082 - acc: 0.9980     
Epoch 43/50
2998/2998 [==============================] - 100s - loss: 0.0358 - acc: 0.9903    
Epoch 44/50
2998/2998 [==============================] - 100s - loss: 0.0123 - acc: 0.9963     
Epoch 45/50
2998/2998 [==============================] - 100s - loss: 0.0053 - acc: 0.9990    
Epoch 46/50
2998/2998 [==============================] - 100s - loss: 0.0043 - acc: 0.9990    
Epoch 47/50
2998/2998 [==============================] - 100s - loss: 0.0042 - acc: 0.9990         
Epoch 48/50
2998/2998 [==============================] - 100s - loss: 0.0048 - acc: 0.9983        
Epoch 49/50
2998/2998 [==============================] - 100s - loss: 0.0041 - acc: 0.9987        
Epoch 50/50
2998/2998 [==============================] - 100s - loss: 0.0034 - acc: 0.9990        
1000/1000 [==============================] - 10s     
2998/2998 [==============================] - 33s     
Epoch 1/50
2998/2998 [==============================] - 100s - loss: 1.4700 - acc: 0.3492     
Epoch 2/50
2998/2998 [==============================] - 100s - loss: 1.2462 - acc: 0.4757    
Epoch 3/50
2998/2998 [==============================] - 100s - loss: 1.2239 - acc: 0.4953    
Epoch 4/50
2998/2998 [==============================] - 100s - loss: 1.1341 - acc: 0.5394     
Epoch 5/50
2998/2998 [==============================] - 100s - loss: 1.3247 - acc: 0.4546    
Epoch 6/50
2998/2998 [==============================] - 100s - loss: 1.4113 - acc: 0.4163    
Epoch 7/50
2998/2998 [==============================] - 100s - loss: 1.0514 - acc: 0.5931     
Epoch 8/50
2998/2998 [==============================] - 100s - loss: 0.8487 - acc: 0.6741    
Epoch 9/50
2998/2998 [==============================] - 100s - loss: 0.5836 - acc: 0.7915     
Epoch 10/50
2998/2998 [==============================] - 100s - loss: 0.4540 - acc: 0.8429    
Epoch 11/50
2998/2998 [==============================] - 100s - loss: 0.2389 - acc: 0.9290    
Epoch 12/50
2998/2998 [==============================] - 100s - loss: 0.1813 - acc: 0.9510    
Epoch 13/50
2998/2998 [==============================] - 100s - loss: 0.1288 - acc: 0.9696     
Epoch 14/50
2998/2998 [==============================] - 100s - loss: 0.1257 - acc: 0.9610     
Epoch 15/50
2998/2998 [==============================] - 100s - loss: 0.1099 - acc: 0.9706    
Epoch 16/50
2998/2998 [==============================] - 100s - loss: 0.0430 - acc: 0.9903    
Epoch 17/50
2998/2998 [==============================] - 100s - loss: 0.0350 - acc: 0.9930    
Epoch 18/50
2998/2998 [==============================] - 100s - loss: 0.0833 - acc: 0.9773    
Epoch 19/50
2998/2998 [==============================] - 100s - loss: 0.0422 - acc: 0.9900     
Epoch 20/50
2998/2998 [==============================] - 100s - loss: 0.0244 - acc: 0.9950     
Epoch 21/50
2998/2998 [==============================] - 100s - loss: 0.0282 - acc: 0.9930    
Epoch 22/50
2998/2998 [==============================] - 100s - loss: 0.0410 - acc: 0.9897    
Epoch 23/50
2998/2998 [==============================] - 100s - loss: 0.0284 - acc: 0.9920    
Epoch 24/50
2998/2998 [==============================] - 100s - loss: 0.0183 - acc: 0.9950    
Epoch 25/50
2998/2998 [==============================] - 100s - loss: 0.0228 - acc: 0.9937     
Epoch 26/50
2998/2998 [==============================] - 100s - loss: 0.0091 - acc: 0.9983    
Epoch 27/50
2998/2998 [==============================] - 100s - loss: 0.0108 - acc: 0.9973     
Epoch 28/50
2998/2998 [==============================] - 100s - loss: 0.0189 - acc: 0.9950    
Epoch 29/50
2998/2998 [==============================] - 100s - loss: 0.0137 - acc: 0.9967     
Epoch 30/50
2998/2998 [==============================] - 100s - loss: 0.0089 - acc: 0.9973    
Epoch 31/50
2998/2998 [==============================] - 100s - loss: 0.0088 - acc: 0.9970    
Epoch 32/50
2998/2998 [==============================] - 100s - loss: 0.0039 - acc: 0.9983    
Epoch 33/50
2998/2998 [==============================] - 100s - loss: 0.0021 - acc: 0.9993         
Epoch 34/50
2998/2998 [==============================] - 100s - loss: 0.0035 - acc: 0.9990    
Epoch 35/50
2998/2998 [==============================] - 100s - loss: 0.0018 - acc: 0.9990        
Epoch 36/50
2998/2998 [==============================] - 100s - loss: 0.0157 - acc: 0.9963        
Epoch 37/50
2998/2998 [==============================] - 100s - loss: 0.0275 - acc: 0.9917    
Epoch 38/50
2998/2998 [==============================] - 100s - loss: 0.0065 - acc: 0.9977     
Epoch 39/50
2998/2998 [==============================] - 100s - loss: 0.0037 - acc: 0.9987    
Epoch 40/50
2998/2998 [==============================] - 100s - loss: 0.0026 - acc: 0.9990         
Epoch 41/50
2998/2998 [==============================] - 100s - loss: 0.0037 - acc: 0.9990        
Epoch 42/50
2998/2998 [==============================] - 100s - loss: 0.0046 - acc: 0.9987        
Epoch 43/50
2998/2998 [==============================] - 100s - loss: 0.0255 - acc: 0.9917     
Epoch 44/50
2998/2998 [==============================] - 100s - loss: 0.0169 - acc: 0.9950    
Epoch 45/50
2998/2998 [==============================] - 100s - loss: 0.0080 - acc: 0.9980    
Epoch 46/50
2998/2998 [==============================] - 100s - loss: 0.0045 - acc: 0.9987         
Epoch 47/50
2998/2998 [==============================] - 100s - loss: 0.0032 - acc: 0.9987         
Epoch 48/50
2998/2998 [==============================] - 100s - loss: 0.0020 - acc: 0.9993        
Epoch 49/50
2998/2998 [==============================] - 100s - loss: 0.0023 - acc: 0.9993     
Epoch 50/50
2998/2998 [==============================] - 102s - loss: 0.0020 - acc: 0.9993        
1000/1000 [==============================] - 12s     
2998/2998 [==============================] - 35s     
Epoch 1/50
2999/2999 [==============================] - 104s - loss: 1.4501 - acc: 0.3671     
Epoch 2/50
2999/2999 [==============================] - 104s - loss: 1.4285 - acc: 0.3901     
Epoch 3/50
2999/2999 [==============================] - 104s - loss: 1.3477 - acc: 0.4328     
Epoch 4/50
2999/2999 [==============================] - 104s - loss: 1.2225 - acc: 0.4962     
Epoch 5/50
2999/2999 [==============================] - 104s - loss: 1.1185 - acc: 0.5398     
Epoch 6/50
2999/2999 [==============================] - 105s - loss: 1.1851 - acc: 0.5205     
Epoch 7/50
2999/2999 [==============================] - 101s - loss: 1.0060 - acc: 0.6005     
Epoch 8/50
2999/2999 [==============================] - 102s - loss: 1.1241 - acc: 0.5265     
Epoch 9/50
2999/2999 [==============================] - 101s - loss: 1.0696 - acc: 0.5702     
Epoch 10/50
2999/2999 [==============================] - 101s - loss: 0.8838 - acc: 0.6586     
Epoch 11/50
2999/2999 [==============================] - 101s - loss: 0.7770 - acc: 0.7119     
Epoch 12/50
2999/2999 [==============================] - 101s - loss: 0.6361 - acc: 0.7663     
Epoch 13/50
2999/2999 [==============================] - 102s - loss: 0.4142 - acc: 0.8646     
Epoch 14/50
2999/2999 [==============================] - 101s - loss: 0.2972 - acc: 0.9006     
Epoch 15/50
2999/2999 [==============================] - 101s - loss: 0.3545 - acc: 0.8870     
Epoch 16/50
2999/2999 [==============================] - 100s - loss: 0.1930 - acc: 0.9403     
Epoch 17/50
2999/2999 [==============================] - 100s - loss: 0.0875 - acc: 0.9773     
Epoch 18/50
2999/2999 [==============================] - 104s - loss: 0.0963 - acc: 0.9710    
Epoch 19/50
2999/2999 [==============================] - 113s - loss: 0.0949 - acc: 0.9767     
Epoch 20/50
2999/2999 [==============================] - 112s - loss: 0.0650 - acc: 0.9850     
Epoch 21/50
2999/2999 [==============================] - 113s - loss: 0.0375 - acc: 0.9923     
Epoch 22/50
2999/2999 [==============================] - 112s - loss: 0.0299 - acc: 0.9933     
Epoch 23/50
2999/2999 [==============================] - 112s - loss: 0.0418 - acc: 0.9907     
Epoch 24/50
2999/2999 [==============================] - 109s - loss: 0.0295 - acc: 0.9917     
Epoch 25/50
2999/2999 [==============================] - 103s - loss: 0.0688 - acc: 0.9803     
Epoch 26/50
2999/2999 [==============================] - 103s - loss: 0.0841 - acc: 0.9797     
Epoch 27/50
2999/2999 [==============================] - 103s - loss: 0.0398 - acc: 0.9900     
Epoch 28/50
2999/2999 [==============================] - 103s - loss: 0.0208 - acc: 0.9960     
Epoch 29/50
2999/2999 [==============================] - 103s - loss: 0.0155 - acc: 0.9967     
Epoch 30/50
2999/2999 [==============================] - 103s - loss: 0.0163 - acc: 0.9940     
Epoch 31/50
2999/2999 [==============================] - 103s - loss: 0.0265 - acc: 0.9923     
Epoch 32/50
2999/2999 [==============================] - 103s - loss: 0.0131 - acc: 0.9963     
Epoch 33/50
2999/2999 [==============================] - 103s - loss: 0.0209 - acc: 0.9953     
Epoch 34/50
2999/2999 [==============================] - 103s - loss: 0.0118 - acc: 0.9960     
Epoch 35/50
2999/2999 [==============================] - 104s - loss: 0.0061 - acc: 0.9983     
Epoch 36/50
2999/2999 [==============================] - 104s - loss: 0.0254 - acc: 0.9933     
Epoch 37/50
2999/2999 [==============================] - 103s - loss: 0.0131 - acc: 0.9953     
Epoch 38/50
1460/2999 [=============>................] - ETA: 53s - loss: 0.0198 - acc: 0.9945 

In [ ]:
print("Best: %f using %s" % (grid_result.best_score_, grid_result.best_params_))

print ("Fitting Time : ", time.time() - start)


print("Done compiling.")

In [ ]:


In [ ]: